mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 20:09:50 +00:00

* and quantized rwkv v5 model * Integrate the quantized rwkv model in the initial example. --------- Co-authored-by: laurent <laurent.mazare@gmail.com>
287 lines
10 KiB
Rust
287 lines
10 KiB
Rust
use crate::{
|
|
quantized_nn::{layer_norm, linear_no_bias as linear, Embedding, Linear},
|
|
quantized_var_builder::VarBuilder,
|
|
};
|
|
use candle::{IndexOp, Result, Tensor};
|
|
use candle_nn::{GroupNorm, LayerNorm, Module};
|
|
|
|
pub use crate::models::rwkv_v5::{Config, State, Tokenizer};
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct SelfAttention {
|
|
key: Linear,
|
|
receptance: Linear,
|
|
value: Linear,
|
|
gate: Linear,
|
|
output: Linear,
|
|
ln_x: candle_nn::GroupNorm,
|
|
time_mix_key: Tensor,
|
|
time_mix_value: Tensor,
|
|
time_mix_receptance: Tensor,
|
|
time_decay: Tensor,
|
|
time_faaaa: Tensor,
|
|
time_mix_gate: Tensor,
|
|
layer_id: usize,
|
|
n_attn_heads: usize,
|
|
}
|
|
|
|
impl SelfAttention {
|
|
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let hidden_size = cfg.hidden_size;
|
|
let attn_hidden_size = cfg.attention_hidden_size;
|
|
let key = linear(hidden_size, attn_hidden_size, vb.pp("key"))?;
|
|
let receptance = linear(hidden_size, attn_hidden_size, vb.pp("receptance"))?;
|
|
let value = linear(hidden_size, attn_hidden_size, vb.pp("value"))?;
|
|
let gate = linear(hidden_size, attn_hidden_size, vb.pp("gate"))?;
|
|
let output = linear(attn_hidden_size, hidden_size, vb.pp("output"))?;
|
|
|
|
let vb_x = vb.pp("ln_x");
|
|
let ln_x_weight = vb_x.get(hidden_size, "weight")?.dequantize(vb.device())?;
|
|
let ln_x_bias = vb_x.get(hidden_size, "bias")?.dequantize(vb.device())?;
|
|
|
|
let ln_x = GroupNorm::new(
|
|
ln_x_weight,
|
|
ln_x_bias,
|
|
hidden_size,
|
|
hidden_size / cfg.head_size,
|
|
1e-5,
|
|
)?;
|
|
|
|
let time_mix_key = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_key")?
|
|
.dequantize(vb.device())?;
|
|
let time_mix_value = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_value")?
|
|
.dequantize(vb.device())?;
|
|
let time_mix_receptance = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_receptance")?
|
|
.dequantize(vb.device())?;
|
|
let n_attn_heads = cfg.hidden_size / cfg.head_size;
|
|
let time_decay = vb
|
|
.get((n_attn_heads, cfg.head_size), "time_decay")?
|
|
.dequantize(vb.device())?;
|
|
let time_faaaa = vb
|
|
.get((n_attn_heads, cfg.head_size), "time_faaaa")?
|
|
.dequantize(vb.device())?;
|
|
let time_mix_gate = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_gate")?
|
|
.dequantize(vb.device())?;
|
|
Ok(Self {
|
|
key,
|
|
value,
|
|
receptance,
|
|
gate,
|
|
output,
|
|
ln_x,
|
|
time_mix_key,
|
|
time_mix_value,
|
|
time_mix_receptance,
|
|
time_decay,
|
|
time_faaaa,
|
|
time_mix_gate,
|
|
layer_id,
|
|
n_attn_heads,
|
|
})
|
|
}
|
|
|
|
pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
|
|
let h = self.time_decay.dim(0)?;
|
|
let (b, t, s) = xs.dims3()?;
|
|
let s = s / h;
|
|
let (receptance, key, value, gate) = {
|
|
// extract key-value
|
|
let shifted = state.per_layer[self.layer_id].extract_key_value.clone();
|
|
let shifted = if shifted.rank() == 2 {
|
|
shifted.unsqueeze(1)?
|
|
} else {
|
|
shifted
|
|
};
|
|
let key = ((xs * &self.time_mix_key)? + &shifted * (1.0 - &self.time_mix_key)?)?;
|
|
let value = ((xs * &self.time_mix_value)? + &shifted * (1.0 - &self.time_mix_value)?)?;
|
|
let receptance = ((xs * &self.time_mix_receptance)?
|
|
+ &shifted * (1.0 - &self.time_mix_receptance)?)?;
|
|
let gate = ((xs * &self.time_mix_gate)? + &shifted * (1.0 - &self.time_mix_gate)?)?;
|
|
|
|
let key = self.key.forward(&key)?;
|
|
let value = self.value.forward(&value)?;
|
|
let receptance = self.receptance.forward(&receptance)?;
|
|
let gate = candle_nn::ops::silu(&self.gate.forward(&gate)?)?;
|
|
state.per_layer[self.layer_id].extract_key_value = xs.i((.., t - 1))?;
|
|
(receptance, key, value, gate)
|
|
};
|
|
// linear attention
|
|
let mut state_ = state.per_layer[self.layer_id].linear_attention.clone();
|
|
let key = key.reshape((b, t, h, s))?.permute((0, 2, 3, 1))?;
|
|
let value = value.reshape((b, t, h, s))?.transpose(1, 2)?;
|
|
let receptance = receptance.reshape((b, t, h, s))?.transpose(1, 2)?;
|
|
|
|
let time_decay = self
|
|
.time_decay
|
|
.exp()?
|
|
.neg()?
|
|
.exp()?
|
|
.reshape(((), 1, 1))?
|
|
.reshape((self.n_attn_heads, (), 1))?;
|
|
let time_faaaa =
|
|
self.time_faaaa
|
|
.reshape(((), 1, 1))?
|
|
.reshape((self.n_attn_heads, (), 1))?;
|
|
|
|
let mut out: Vec<Tensor> = Vec::with_capacity(t);
|
|
for t_ in 0..t {
|
|
let rt = receptance.i((.., .., t_..t_ + 1))?.contiguous()?;
|
|
let kt = key.i((.., .., .., t_..t_ + 1))?.contiguous()?;
|
|
let vt = value.i((.., .., t_..t_ + 1))?.contiguous()?;
|
|
let at = kt.matmul(&vt)?;
|
|
let rhs = (time_faaaa.broadcast_mul(&at)? + &state_)?;
|
|
let out_ = rt.matmul(&rhs)?.squeeze(2)?;
|
|
state_ = (&at + time_decay.broadcast_mul(&state_))?;
|
|
out.push(out_)
|
|
}
|
|
let out = Tensor::cat(&out, 1)?.reshape((b * t, h * s, 1))?;
|
|
let out = out.apply(&self.ln_x)?.reshape((b, t, h * s))?;
|
|
let out = (out * gate)?.apply(&self.output)?;
|
|
state.per_layer[self.layer_id].linear_attention = state_;
|
|
Ok(out)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct FeedForward {
|
|
time_mix_key: Tensor,
|
|
time_mix_receptance: Tensor,
|
|
key: Linear,
|
|
receptance: Linear,
|
|
value: Linear,
|
|
layer_id: usize,
|
|
}
|
|
|
|
impl FeedForward {
|
|
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let int_size = cfg
|
|
.intermediate_size
|
|
.unwrap_or(((cfg.hidden_size as f64 * 3.5) as usize) / 32 * 32);
|
|
let key = linear(cfg.hidden_size, int_size, vb.pp("key"))?;
|
|
let receptance = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("receptance"))?;
|
|
let value = linear(int_size, cfg.hidden_size, vb.pp("value"))?;
|
|
let time_mix_key = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_key")?
|
|
.dequantize(vb.device())?;
|
|
let time_mix_receptance = vb
|
|
.get((1, 1, cfg.hidden_size), "time_mix_receptance")?
|
|
.dequantize(vb.device())?;
|
|
Ok(Self {
|
|
key,
|
|
receptance,
|
|
value,
|
|
time_mix_key,
|
|
time_mix_receptance,
|
|
layer_id,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
|
|
let shifted = &state.per_layer[self.layer_id].feed_forward;
|
|
let key = (xs.broadcast_mul(&self.time_mix_key)?
|
|
+ shifted.broadcast_mul(&(1.0 - &self.time_mix_key)?)?)?;
|
|
let receptance = (xs.broadcast_mul(&self.time_mix_receptance)?
|
|
+ shifted.broadcast_mul(&(1.0 - &self.time_mix_receptance)?)?)?;
|
|
let key = key.apply(&self.key)?.relu()?.sqr()?;
|
|
let value = key.apply(&self.value)?;
|
|
let receptance = candle_nn::ops::sigmoid(&receptance.apply(&self.receptance)?)?;
|
|
state.per_layer[self.layer_id].feed_forward = xs.i((.., xs.dim(1)? - 1))?;
|
|
let xs = (receptance * value)?;
|
|
Ok(xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Block {
|
|
pre_ln: Option<LayerNorm>,
|
|
ln1: LayerNorm,
|
|
ln2: LayerNorm,
|
|
attention: SelfAttention,
|
|
feed_forward: FeedForward,
|
|
}
|
|
|
|
impl Block {
|
|
fn new(layer_id: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let ln1 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln1"))?;
|
|
let ln2 = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("ln2"))?;
|
|
let pre_ln = if layer_id == 0 {
|
|
let ln = layer_norm(cfg.hidden_size, cfg.layer_norm_epsilon, vb.pp("pre_ln"))?;
|
|
Some(ln)
|
|
} else {
|
|
None
|
|
};
|
|
let attention = SelfAttention::new(layer_id, cfg, vb.pp("attention"))?;
|
|
let feed_forward = FeedForward::new(layer_id, cfg, vb.pp("feed_forward"))?;
|
|
Ok(Self {
|
|
pre_ln,
|
|
ln1,
|
|
ln2,
|
|
attention,
|
|
feed_forward,
|
|
})
|
|
}
|
|
|
|
fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
|
|
let xs = match self.pre_ln.as_ref() {
|
|
None => xs.clone(),
|
|
Some(pre_ln) => xs.apply(pre_ln)?,
|
|
};
|
|
let attention = self.attention.forward(&xs.apply(&self.ln1)?, state)?;
|
|
let xs = (xs + attention)?;
|
|
let feed_forward = self.feed_forward.forward(&xs.apply(&self.ln2)?, state)?;
|
|
let xs = (xs + feed_forward)?;
|
|
Ok(xs)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Model {
|
|
embeddings: Embedding,
|
|
blocks: Vec<Block>,
|
|
ln_out: LayerNorm,
|
|
head: Linear,
|
|
rescale_every: usize,
|
|
layers_are_rescaled: bool,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
|
let vb_m = vb.pp("rwkv");
|
|
let embeddings = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embeddings"))?;
|
|
let mut blocks = Vec::with_capacity(cfg.num_hidden_layers);
|
|
let vb_b = vb_m.pp("blocks");
|
|
for block_index in 0..cfg.num_hidden_layers {
|
|
let block = Block::new(block_index, cfg, vb_b.pp(block_index))?;
|
|
blocks.push(block)
|
|
}
|
|
let ln_out = layer_norm(cfg.hidden_size, 1e-5, vb_m.pp("ln_out"))?;
|
|
let head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("head"))?;
|
|
Ok(Self {
|
|
embeddings,
|
|
blocks,
|
|
ln_out,
|
|
head,
|
|
rescale_every: cfg.rescale_every,
|
|
layers_are_rescaled: false, // This seem to only happen for the f16/bf16 dtypes.
|
|
})
|
|
}
|
|
|
|
pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
|
|
let (_b_size, _seq_len) = xs.dims2()?;
|
|
let mut xs = xs.apply(&self.embeddings)?;
|
|
for (block_idx, block) in self.blocks.iter().enumerate() {
|
|
xs = block.forward(&xs, state)?;
|
|
if self.layers_are_rescaled && (block_idx + 1) % self.rescale_every == 0 {
|
|
xs = (xs / 2.)?
|
|
}
|
|
}
|
|
let xs = xs.apply(&self.ln_out)?.apply(&self.head)?;
|
|
state.pos += 1;
|
|
Ok(xs)
|
|
}
|
|
}
|