mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
35 lines
1.1 KiB
Rust
35 lines
1.1 KiB
Rust
use candle::{Device, Result, Tensor};
|
|
|
|
/* Equivalent python code:
|
|
import torch
|
|
import torch.nn.functional as F
|
|
input = torch.tensor([
|
|
[ 1.1050, 0.3013, -1.5394, -2.1528, -0.8634],
|
|
[ 1.0730, -0.9419, -0.1670, -0.6582, 0.5061],
|
|
[ 0.8318, 1.1154, -0.3610, 0.5351, 1.0830]])
|
|
|
|
target = torch.tensor([1, 0, 4])
|
|
print(F.nll_loss(F.log_softmax(input, dim=1), target))
|
|
print(F.cross_entropy(input, target))
|
|
*/
|
|
#[test]
|
|
fn nll_and_cross_entropy() -> Result<()> {
|
|
let cpu = Device::Cpu;
|
|
let input = Tensor::new(
|
|
&[
|
|
[1.1050f32, 0.3013, -1.5394, -2.1528, -0.8634],
|
|
[1.0730, -0.9419, -0.1670, -0.6582, 0.5061],
|
|
[0.8318, 1.1154, -0.3610, 0.5351, 1.0830],
|
|
],
|
|
&cpu,
|
|
)?;
|
|
let target = Tensor::new(&[1u32, 0, 4], &cpu)?;
|
|
|
|
let log_softmax = candle_nn::ops::log_softmax(&input, 1)?;
|
|
let loss = candle_nn::loss::nll(&log_softmax, &target)?;
|
|
assert_eq!(loss.to_vec0::<f32>()?, 1.1312335);
|
|
let loss = candle_nn::loss::cross_entropy(&input, &target)?;
|
|
assert_eq!(loss.to_vec0::<f32>()?, 1.1312335);
|
|
Ok(())
|
|
}
|