Files
candle/candle-transformers/src/models/llava/mod.rs
Quentin Gallouédec ffb8d63324 Use HF Papers
2025-05-17 03:41:24 +00:00

413 lines
16 KiB
Rust

//! The LLaVA (Large Language and Vision Assistant) model.
//!
//! This provides the main model implementation combining a vision tower (CLIP) with
//! language model (Llama) for multimodal capabilities. The architecture implements the training-free projection technique.
//!
//! - 💻[GH Link](https://github.com/haotian-liu/LLaVA/tree/main)
//! - 📝 [Paper](https://huggingface.co/papers/2304.08485)/ Visual Instruction Tuning
//!
pub mod config;
pub mod utils;
use crate::models::clip::vision_model::{ClipVisionConfig, ClipVisionTransformer};
use crate::models::llama::{Cache, Llama};
use crate::models::with_tracing::linear;
use candle::{bail, Context, Device, IndexOp, Result, Tensor};
use candle_nn::{seq, Activation, Module, Sequential, VarBuilder};
use fancy_regex::Regex;
use utils::get_anyres_image_grid_shape;
use config::LLaVAConfig;
fn mlp_gelu_match(mm_projector_type: &str) -> Option<usize> {
let mlp_gelu_regex = Regex::new(r"^mlp(\d+)x_gelu$").unwrap();
if let Ok(Some(captures)) = mlp_gelu_regex.captures(mm_projector_type) {
if let Some(match_str) = captures.get(1) {
let match_str = match_str.as_str();
match_str.parse::<usize>().ok()
} else {
None
}
} else {
None
}
}
fn unpad_image(tensor: &Tensor, original_size: &(u32, u32)) -> Result<Tensor> {
assert_eq!(tensor.dims().len(), 3);
let (original_width, original_height) = *original_size;
let tensor_dims = tensor.dims();
let current_height = tensor_dims[1];
let current_width = tensor_dims[2];
let original_aspect_ratio = (original_width as f32) / (original_height as f32);
let current_aspect_ratio = (current_width as f32) / (current_height as f32);
if original_aspect_ratio > current_aspect_ratio {
let scale_factor = (current_width as f32) / (original_width as f32);
let new_height = (original_height as f32 * scale_factor).floor() as usize;
let padding = (current_height - new_height) / 2;
tensor.i((.., padding..current_width - padding, ..))
} else {
let scale_factor = (current_height as f32) / (original_height as f32);
let new_width = (original_width as f32 * scale_factor).floor() as usize;
let padding = (current_width - new_width) / 2;
tensor.i((.., .., padding..current_width - padding))
}
}
pub struct IdentityMap {}
impl Module for IdentityMap {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
Ok(x.clone())
}
}
pub struct MMProjector {
pub modules: Sequential,
}
impl MMProjector {
pub fn load(vb: &VarBuilder, config: &LLaVAConfig) -> Result<Self> {
if config.mm_projector_type == "linear" {
let vb_prefix = if config.hf {
"multi_modal_projector.linear_1"
} else {
"model.mm_projector.0"
};
let linear = linear(config.mm_hidden_size, config.hidden_size, vb.pp(vb_prefix))?;
let modules = seq().add(linear);
Ok(Self { modules })
} else if let Some(mlp_depth) = mlp_gelu_match(&config.mm_projector_type) {
let modules = if config.hf {
let mut modules = seq().add(linear(
config.mm_hidden_size,
config.hidden_size,
vb.pp("multi_modal_projector.linear_1"),
)?);
for i in 1..mlp_depth {
modules = modules.add(Activation::Gelu).add(linear(
config.hidden_size,
config.hidden_size,
vb.pp(format!("multi_modal_projector.linear_{}", i + 1)),
)?);
}
modules
} else {
let mut modules = seq().add(linear(
config.mm_hidden_size,
config.hidden_size,
vb.pp("model.mm_projector.0"),
)?);
for i in 1..mlp_depth {
modules = modules.add(Activation::Gelu).add(linear(
config.hidden_size,
config.hidden_size,
vb.pp(format!("model.mm_projector.{}", i * 2)),
)?);
}
modules
};
Ok(Self { modules })
} else if config.mm_projector_type == "identity" {
Ok(Self {
modules: seq().add(IdentityMap {}),
})
} else {
bail!(
"Unsupported MM projector type: {}",
config.mm_projector_type
)
}
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
self.modules.forward(x)
}
}
pub struct ClipVisionTower {
model: ClipVisionTransformer,
select_layer: isize,
select_feature_method: String,
pub config: ClipVisionConfig,
}
impl ClipVisionTower {
pub fn new(
vb: VarBuilder,
select_layer: isize,
select_feature_method: &str,
config: &Option<ClipVisionConfig>,
) -> Result<Self> {
let config = if config.is_none() {
ClipVisionConfig::clip_vit_large_patch14_336()
} else {
config.clone().context("no config")?
};
let select_layer = match select_layer {
-1 | -2 => select_layer,
_ => bail!("Unsupported select layer: {}", select_layer),
};
let model = ClipVisionTransformer::new(vb, &config)?;
Ok(Self {
model,
select_layer,
select_feature_method: select_feature_method.to_string(),
config,
})
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
let result = self.model.output_hidden_states(x)?;
let index = result.len() as isize + self.select_layer;
let result = result[index as usize].clone();
if self.select_feature_method == "cls_patch" {
Ok(result)
} else {
result.i((.., 1..))
}
}
pub fn num_patches_per_side(&self) -> usize {
self.config.image_size / self.config.patch_size
}
}
pub struct LLaVA {
pub clip_vision_tower: ClipVisionTower,
pub image_newline: Tensor,
pub mm_projector: MMProjector,
pub llama: Llama,
config: LLaVAConfig,
device: Device,
}
impl LLaVA {
pub fn load(
vb: VarBuilder,
config: &LLaVAConfig,
clip_vision_config: Option<ClipVisionConfig>,
) -> Result<Self> {
let device = vb.device().clone();
let llama_config = config.to_llama_config();
let mm_projector = MMProjector::load(&vb, config)?;
let (clip_vision_tower, image_newline, llama) = if config.hf {
(
ClipVisionTower::new(
vb.pp("vision_tower.vision_model"),
config.mm_vision_select_layer,
&config.mm_vision_select_feature,
&clip_vision_config,
)?,
vb.get(&[config.hidden_size], "image_newline")?
.to_device(&device)?,
Llama::load(vb.pp("language_model"), &llama_config)?,
)
} else {
(
ClipVisionTower::new(
vb.pp("model.vision_tower.vision_tower.vision_model"),
config.mm_vision_select_layer,
&config.mm_vision_select_feature,
&clip_vision_config,
)?,
vb.get(&[config.hidden_size], "model.image_newline")?
.to_device(&device)?,
Llama::load(vb, &llama_config)?,
)
};
Ok(Self {
clip_vision_tower,
image_newline,
mm_projector,
llama,
config: (*config).clone(),
device,
})
}
pub fn encode_images(&self, x: &Tensor) -> Result<Tensor> {
let image_features = self.clip_vision_tower.forward(x)?;
let image_features = self.mm_projector.forward(&image_features)?;
Ok(image_features)
}
// currently only for single image, 4 dim tensor
pub fn prepare_inputs_labels_for_multimodal(
&self,
input_ids: &Tensor,
images: &[Tensor],
image_sizes: &[(u32, u32)],
) -> Result<Tensor> {
//TODO: process of multiple images/ new line
// 576: 336(input size)/14(patch size)=24 24*24+1(class)=577 577-1=576
let concat_images = Tensor::cat(images, 0)?;
let image_features_together = self.encode_images(&concat_images)?;
let split_sizes = images
.iter()
.map(|x| x.shape().dims()[0])
.collect::<Vec<usize>>();
// can be replaced by split
let mut index_pos = 0;
let mut image_features = Vec::new();
for split_size in split_sizes.iter() {
image_features.push(image_features_together.i(index_pos..index_pos + (*split_size))?);
index_pos += *split_size;
}
let mm_patch_merge_type = &self.config.mm_patch_merge_type;
let image_aspect_ratio = &self.config.image_aspect_ratio;
let image_features = if mm_patch_merge_type == "flat" {
image_features
.iter()
.map(|x| x.flatten(0, 1))
.collect::<Result<Vec<Tensor>>>()?
} else if mm_patch_merge_type.starts_with("spatial") {
let mut new_image_features = Vec::new();
for (image_idx, image_feature) in image_features.iter().enumerate() {
let new_image_feature = if image_feature.dims()[0] > 1 {
let base_image_feature = image_feature.get(0)?;
let patch_image_feature = image_feature.i(1..)?;
let height = self.clip_vision_tower.num_patches_per_side();
let width = height;
assert_eq!(height * width, base_image_feature.dims()[0]);
let image_size = image_sizes[image_idx];
let new_image_feature = if image_aspect_ratio == "anyres" {
let (num_patch_width, num_patch_height) = get_anyres_image_grid_shape(
image_size,
&self.config.image_grid_pinpoints,
self.clip_vision_tower.config.image_size as u32,
);
patch_image_feature.reshape((
num_patch_height as usize,
num_patch_width as usize,
height,
width,
(),
))?
} else {
bail!("not implemented in original python LLaVA yet")
};
let new_image_feature = if mm_patch_merge_type.contains("unpad") {
let new_image_feature = new_image_feature
.permute((4, 0, 2, 1, 3))?
.flatten(1, 2)?
.flatten(2, 3)?;
let new_image_feature = unpad_image(&new_image_feature, &image_size)?;
let new_image_feature_dims = new_image_feature.dims();
let image_new_line = self
.image_newline
.reshape((self.config.hidden_size, 1, 1))?
.broadcast_as((
new_image_feature_dims[0],
new_image_feature_dims[1],
1,
))?;
let new_image_feature =
Tensor::cat(&[new_image_feature, image_new_line], 2)?;
new_image_feature.flatten(1, 2)?.transpose(0, 1)?
} else {
new_image_feature.permute((0, 2, 1, 3, 4))?.flatten(0, 3)?
};
Tensor::cat(&[base_image_feature, new_image_feature], 0)?
} else {
let new_image_feature = image_feature.get(0)?;
if mm_patch_merge_type.contains("unpad") {
Tensor::cat(
&[new_image_feature, self.image_newline.clone().unsqueeze(0)?],
0,
)?
} else {
new_image_feature
}
};
new_image_features.push(new_image_feature);
}
new_image_features
} else {
bail!("Unexpected mm_patch_merge_type: {mm_patch_merge_type}")
};
// can easily be replaced by nonzero if it is implemented in candle
let input_ids_vec = input_ids.squeeze(0)?.to_vec1::<i64>()?;
let mut image_indices = {
let mut image_indices = vec![0_i64];
image_indices.extend(
input_ids_vec
.iter()
.enumerate()
.filter_map(|(i, x)| {
if *x == self.config.image_token_index as i64 {
Some(i as i64)
} else {
None
}
})
.collect::<Vec<i64>>(),
);
image_indices
};
if image_indices.len() == 1 {
//no image, only [0],
return self.llama.embed(input_ids);
}
let input_ids_noim = input_ids_vec
.iter()
.filter_map(|x| {
if *x != self.config.image_token_index as i64 {
Some(*x)
} else {
None
}
})
.collect::<Vec<i64>>();
let input_ids_noim_len = input_ids_noim.len();
image_indices.push((input_ids_noim_len) as i64);
let input_ids_noim = Tensor::from_vec(input_ids_noim, input_ids_noim_len, &self.device)?;
let cur_input_embeds = self.llama.embed(&input_ids_noim)?;
// can be replace by split if it is implemented in candle
let input_embed_no_ims = {
let mut input_embeds = Vec::new();
for i in 0..image_indices.len() - 1 {
let start = (image_indices[i]) as usize;
let end = image_indices[i + 1] as usize;
input_embeds.push(cur_input_embeds.i((start..end, ..))?)
}
input_embeds
};
let mut cur_new_input_embeds = Vec::new();
for (i, image_feature) in image_features.iter().enumerate() {
cur_new_input_embeds.push(input_embed_no_ims[i].clone());
cur_new_input_embeds.push(image_feature.clone());
}
cur_new_input_embeds.push(input_embed_no_ims[image_features.len()].clone());
let new_input_embeds = Tensor::cat(&cur_new_input_embeds, 0)?;
//trancate
let new_input_embeds =
if let Some(tokenizer_model_max_length) = self.config.tokenizer_model_max_length {
let (new_input_embeds_length, _) = new_input_embeds.shape().dims2()?;
if new_input_embeds_length > tokenizer_model_max_length {
new_input_embeds.i((..tokenizer_model_max_length, ..))?
} else {
new_input_embeds
}
} else {
new_input_embeds
};
new_input_embeds.unsqueeze(0)
}
pub fn forward(
&self,
input_embeds: &Tensor,
position_id: usize,
cache: &mut Cache,
) -> Result<Tensor> {
self.llama
.forward_input_embed(input_embeds, position_id, cache)
}
}