1
0
mirror of git://jb55.com/damus synced 2024-09-16 02:03:45 +00:00
damus/nostrdb/flatcc/builder.c
William Casarin 6863e74c0f nostrdb: fix japanese profile names not loading
update flatcc, including the patch that fixes japanese usenames

Changelog-Fixed: Fix japanese profiles names not loading
2023-11-02 10:20:40 +09:00

2051 lines
64 KiB
C

/*
* Codegenerator for C, building FlatBuffers.
*
* There are several approaches, some light, some requiring a library,
* some with vectored I/O etc.
*
* Here we focus on a reasonable balance of light code and efficiency.
*
* Builder code is generated to a separate file that includes the
* generated read-only code.
*
* Mutable buffers are not supported in this version.
*
*/
#include <stdlib.h>
#include <string.h>
#include "flatcc_builder.h"
#include "flatcc_emitter.h"
/*
* `check` is designed to handle incorrect use errors that can be
* ignored in production of a tested product.
*
* `check_error` fails if condition is false and is designed to return an
* error code in production.
*/
#if FLATCC_BUILDER_ASSERT_ON_ERROR
#define check(cond, reason) FLATCC_BUILDER_ASSERT(cond, reason)
#else
#define check(cond, reason) ((void)0)
#endif
#if FLATCC_BUILDER_SKIP_CHECKS
#define check_error(cond, err, reason) ((void)0)
#else
#define check_error(cond, err, reason) if (!(cond)) { check(cond, reason); return err; }
#endif
/* `strnlen` not widely supported. */
static inline size_t pstrnlen(const char *s, size_t max_len)
{
const char *end = memchr(s, 0, max_len);
return end ? (size_t)(end - s) : max_len;
}
#undef strnlen
#define strnlen pstrnlen
/* Padding can be up to 255 zeroes, and 1 zero string termination byte.
* When two paddings are combined at nested buffers, we need twice that.
* Visible to emitter so it can test for zero padding in iov. */
const uint8_t flatcc_builder_padding_base[512] = { 0 };
#define _pad flatcc_builder_padding_base
#define uoffset_t flatbuffers_uoffset_t
#define soffset_t flatbuffers_soffset_t
#define voffset_t flatbuffers_voffset_t
#define utype_t flatbuffers_utype_t
#define write_uoffset __flatbuffers_uoffset_write_to_pe
#define write_voffset __flatbuffers_voffset_write_to_pe
#define write_identifier __flatbuffers_uoffset_write_to_pe
#define write_utype __flatbuffers_utype_write_to_pe
#define field_size sizeof(uoffset_t)
#define max_offset_count FLATBUFFERS_COUNT_MAX(field_size)
#define union_size sizeof(flatcc_builder_union_ref_t)
#define max_union_count FLATBUFFERS_COUNT_MAX(union_size)
#define utype_size sizeof(utype_t)
#define max_utype_count FLATBUFFERS_COUNT_MAX(utype_size)
#define max_string_len FLATBUFFERS_COUNT_MAX(1)
#define identifier_size FLATBUFFERS_IDENTIFIER_SIZE
#define iovec_t flatcc_iovec_t
#define frame_size sizeof(__flatcc_builder_frame_t)
#define frame(x) (B->frame[0].x)
/* `align` must be a power of 2. */
static inline uoffset_t alignup_uoffset(uoffset_t x, size_t align)
{
return (x + (uoffset_t)align - 1u) & ~((uoffset_t)align - 1u);
}
static inline size_t alignup_size(size_t x, size_t align)
{
return (x + align - 1u) & ~(align - 1u);
}
typedef struct vtable_descriptor vtable_descriptor_t;
struct vtable_descriptor {
/* Where the vtable is emitted. */
flatcc_builder_ref_t vt_ref;
/* Which buffer it was emitted to. */
uoffset_t nest_id;
/* Where the vtable is cached. */
uoffset_t vb_start;
/* Hash table collision chain. */
uoffset_t next;
};
typedef struct flatcc_iov_state flatcc_iov_state_t;
struct flatcc_iov_state {
size_t len;
int count;
flatcc_iovec_t iov[FLATCC_IOV_COUNT_MAX];
};
#define iov_state_t flatcc_iov_state_t
/* This assumes `iov_state_t iov;` has been declared in scope */
#define push_iov_cond(base, size, cond) if ((size) > 0 && (cond)) { iov.len += size;\
iov.iov[iov.count].iov_base = (void *)(base); iov.iov[iov.count].iov_len = (size); ++iov.count; }
#define push_iov(base, size) push_iov_cond(base, size, 1)
#define init_iov() { iov.len = 0; iov.count = 0; }
int flatcc_builder_default_alloc(void *alloc_context, iovec_t *b, size_t request, int zero_fill, int hint)
{
void *p;
size_t n;
(void)alloc_context;
if (request == 0) {
if (b->iov_base) {
FLATCC_BUILDER_FREE(b->iov_base);
b->iov_base = 0;
b->iov_len = 0;
}
return 0;
}
switch (hint) {
case flatcc_builder_alloc_ds:
n = 256;
break;
case flatcc_builder_alloc_ht:
/* Should be exact size, or space size is just wasted. */
n = request;
break;
case flatcc_builder_alloc_fs:
n = sizeof(__flatcc_builder_frame_t) * 8;
break;
case flatcc_builder_alloc_us:
n = 64;
break;
default:
/*
* We have many small structures - vs stack for tables with few
* elements, and few offset fields in patch log. No need to
* overallocate in case of busy small messages.
*/
n = 32;
break;
}
while (n < request) {
n *= 2;
}
if (request <= b->iov_len && b->iov_len / 2 >= n) {
/* Add hysteresis to shrink. */
return 0;
}
if (!(p = FLATCC_BUILDER_REALLOC(b->iov_base, n))) {
return -1;
}
/* Realloc might also shrink. */
if (zero_fill && b->iov_len < n) {
memset((uint8_t *)p + b->iov_len, 0, n - b->iov_len);
}
b->iov_base = p;
b->iov_len = n;
return 0;
}
#define T_ptr(base, pos) ((void *)((size_t)(base) + (size_t)(pos)))
#define ds_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_ds].iov_base, (pos)))
#define vs_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vs].iov_base, (pos)))
#define pl_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_pl].iov_base, (pos)))
#define us_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_us].iov_base, (pos)))
#define vd_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vd].iov_base, (pos)))
#define vb_ptr(pos) (T_ptr(B->buffers[flatcc_builder_alloc_vb].iov_base, (pos)))
#define vs_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_vs].iov_base))
#define pl_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_pl].iov_base))
#define us_offset(ptr) ((uoffset_t)((size_t)(ptr) - (size_t)B->buffers[flatcc_builder_alloc_us].iov_base))
#define table_limit (FLATBUFFERS_VOFFSET_MAX - field_size + 1)
#define data_limit (FLATBUFFERS_UOFFSET_MAX - field_size + 1)
#define set_identifier(id) memcpy(&B->identifier, (id) ? (void *)(id) : (void *)_pad, identifier_size)
/* Must also return true when no buffer has been started. */
#define is_top_buffer(B) (B->nest_id == 0)
/*
* Tables use a stack represention better suited for quickly adding
* fields to tables, but it must occasionally be refreshed following
* reallocation or reentry from child frame.
*/
static inline void refresh_ds(flatcc_builder_t *B, uoffset_t type_limit)
{
iovec_t *buf = B->buffers + flatcc_builder_alloc_ds;
B->ds = ds_ptr(B->ds_first);
B->ds_limit = (uoffset_t)buf->iov_len - B->ds_first;
/*
* So we don't allocate outside tables representation size, nor our
* current buffer size.
*/
if (B->ds_limit > type_limit) {
B->ds_limit = type_limit;
}
/* So exit frame can refresh fast. */
frame(type_limit) = type_limit;
}
static int reserve_ds(flatcc_builder_t *B, size_t need, uoffset_t limit)
{
iovec_t *buf = B->buffers + flatcc_builder_alloc_ds;
if (B->alloc(B->alloc_context, buf, B->ds_first + need, 1, flatcc_builder_alloc_ds)) {
return -1;
}
refresh_ds(B, limit);
return 0;
}
/*
* Make sure there is always an extra zero termination on stack
* even if it isn't emitted such that string updates may count
* on zero termination being present always.
*/
static inline void *push_ds(flatcc_builder_t *B, uoffset_t size)
{
size_t offset;
offset = B->ds_offset;
if ((B->ds_offset += size) >= B->ds_limit) {
if (reserve_ds(B, B->ds_offset + 1, data_limit)) {
return 0;
}
}
return B->ds + offset;
}
static inline void unpush_ds(flatcc_builder_t *B, uoffset_t size)
{
B->ds_offset -= size;
memset(B->ds + B->ds_offset, 0, size);
}
static inline void *push_ds_copy(flatcc_builder_t *B, const void *data, uoffset_t size)
{
void *p;
if (!(p = push_ds(B, size))) {
return 0;
}
memcpy(p, data, size);
return p;
}
static inline void *push_ds_field(flatcc_builder_t *B, uoffset_t size, uint16_t align, voffset_t id)
{
uoffset_t offset;
/*
* We calculate table field alignment relative to first entry, not
* header field with vtable offset.
*
* Note: >= comparison handles special case where B->ds is not
* allocated yet and size is 0 so the return value would be mistaken
* for an error.
*/
offset = alignup_uoffset(B->ds_offset, align);
if ((B->ds_offset = offset + size) >= B->ds_limit) {
if (reserve_ds(B, B->ds_offset + 1, table_limit)) {
return 0;
}
}
B->vs[id] = (voffset_t)(offset + field_size);
if (id >= B->id_end) {
B->id_end = id + 1u;
}
return B->ds + offset;
}
static inline void *push_ds_offset_field(flatcc_builder_t *B, voffset_t id)
{
uoffset_t offset;
offset = alignup_uoffset(B->ds_offset, field_size);
if ((B->ds_offset = offset + field_size) > B->ds_limit) {
if (reserve_ds(B, B->ds_offset, table_limit)) {
return 0;
}
}
B->vs[id] = (voffset_t)(offset + field_size);
if (id >= B->id_end) {
B->id_end = id + 1u;
}
*B->pl++ = (flatbuffers_voffset_t)offset;
return B->ds + offset;
}
static inline void *reserve_buffer(flatcc_builder_t *B, int alloc_type, size_t used, size_t need, int zero_init)
{
iovec_t *buf = B->buffers + alloc_type;
if (used + need > buf->iov_len) {
if (B->alloc(B->alloc_context, buf, used + need, zero_init, alloc_type)) {
check(0, "memory allocation failed");
return 0;
}
}
return (void *)((size_t)buf->iov_base + used);
}
static inline int reserve_fields(flatcc_builder_t *B, int count)
{
size_t used, need;
/* Provide faster stack operations for common table operations. */
used = frame(container.table.vs_end) + frame(container.table.id_end) * sizeof(voffset_t);
need = (size_t)(count + 2) * sizeof(voffset_t);
if (!(B->vs = reserve_buffer(B, flatcc_builder_alloc_vs, used, need, 1))) {
return -1;
}
/* Move past header for convenience. */
B->vs += 2;
used = frame(container.table.pl_end);
/* Add one to handle special case of first table being empty. */
need = (size_t)count * sizeof(*(B->pl)) + 1;
if (!(B->pl = reserve_buffer(B, flatcc_builder_alloc_pl, used, need, 0))) {
return -1;
}
return 0;
}
static int alloc_ht(flatcc_builder_t *B)
{
iovec_t *buf = B->buffers + flatcc_builder_alloc_ht;
size_t size, k;
/* Allocate null entry so we can check for return errors. */
FLATCC_ASSERT(B->vd_end == 0);
if (!reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0)) {
return -1;
}
B->vd_end = sizeof(vtable_descriptor_t);
size = field_size * FLATCC_BUILDER_MIN_HASH_COUNT;
if (B->alloc(B->alloc_context, buf, size, 1, flatcc_builder_alloc_ht)) {
return -1;
}
while (size * 2 <= buf->iov_len) {
size *= 2;
}
size /= field_size;
for (k = 0; (((size_t)1) << k) < size; ++k) {
}
B->ht_width = k;
return 0;
}
static inline uoffset_t *lookup_ht(flatcc_builder_t *B, uint32_t hash)
{
uoffset_t *T;
if (B->ht_width == 0) {
if (alloc_ht(B)) {
return 0;
}
}
T = B->buffers[flatcc_builder_alloc_ht].iov_base;
return &T[FLATCC_BUILDER_BUCKET_VT_HASH(hash, B->ht_width)];
}
void flatcc_builder_flush_vtable_cache(flatcc_builder_t *B)
{
iovec_t *buf = B->buffers + flatcc_builder_alloc_ht;
if (B->ht_width == 0) {
return;
}
memset(buf->iov_base, 0, buf->iov_len);
/* Reserve the null entry. */
B->vd_end = sizeof(vtable_descriptor_t);
B->vb_end = 0;
}
int flatcc_builder_custom_init(flatcc_builder_t *B,
flatcc_builder_emit_fun *emit, void *emit_context,
flatcc_builder_alloc_fun *alloc, void *alloc_context)
{
/*
* Do not allocate anything here. Only the required buffers will be
* allocated. For simple struct buffers, no allocation is required
* at all.
*/
memset(B, 0, sizeof(*B));
if (emit == 0) {
B->is_default_emitter = 1;
emit = flatcc_emitter;
emit_context = &B->default_emit_context;
}
if (alloc == 0) {
alloc = flatcc_builder_default_alloc;
}
B->alloc_context = alloc_context;
B->alloc = alloc;
B->emit_context = emit_context;
B->emit = emit;
return 0;
}
int flatcc_builder_init(flatcc_builder_t *B)
{
return flatcc_builder_custom_init(B, 0, 0, 0, 0);
}
int flatcc_builder_custom_reset(flatcc_builder_t *B, int set_defaults, int reduce_buffers)
{
iovec_t *buf;
int i;
for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) {
buf = B->buffers + i;
if (buf->iov_base) {
/* Don't try to reduce the hash table. */
if (i != flatcc_builder_alloc_ht &&
reduce_buffers && B->alloc(B->alloc_context, buf, 1, 1, i)) {
return -1;
}
memset(buf->iov_base, 0, buf->iov_len);
} else {
FLATCC_ASSERT(buf->iov_len == 0);
}
}
B->vb_end = 0;
if (B->vd_end > 0) {
/* Reset past null entry. */
B->vd_end = sizeof(vtable_descriptor_t);
}
B->min_align = 0;
B->emit_start = 0;
B->emit_end = 0;
B->level = 0;
B->limit_level = 0;
B->ds_offset = 0;
B->ds_limit = 0;
B->nest_count = 0;
B->nest_id = 0;
/* Needed for correct offset calculation. */
B->ds = B->buffers[flatcc_builder_alloc_ds].iov_base;
B->pl = B->buffers[flatcc_builder_alloc_pl].iov_base;
B->vs = B->buffers[flatcc_builder_alloc_vs].iov_base;
B->frame = 0;
if (set_defaults) {
B->vb_flush_limit = 0;
B->max_level = 0;
B->disable_vt_clustering = 0;
}
if (B->is_default_emitter) {
flatcc_emitter_reset(&B->default_emit_context);
}
if (B->refmap) {
flatcc_refmap_reset(B->refmap);
}
return 0;
}
int flatcc_builder_reset(flatcc_builder_t *B)
{
return flatcc_builder_custom_reset(B, 0, 0);
}
void flatcc_builder_clear(flatcc_builder_t *B)
{
iovec_t *buf;
int i;
for (i = 0; i < FLATCC_BUILDER_ALLOC_BUFFER_COUNT; ++i) {
buf = B->buffers + i;
B->alloc(B->alloc_context, buf, 0, 0, i);
}
if (B->is_default_emitter) {
flatcc_emitter_clear(&B->default_emit_context);
}
if (B->refmap) {
flatcc_refmap_clear(B->refmap);
}
memset(B, 0, sizeof(*B));
}
static inline void set_min_align(flatcc_builder_t *B, uint16_t align)
{
if (B->min_align < align) {
B->min_align = align;
}
}
/*
* It's a max, but the minimum viable alignment is the largest observed
* alignment requirement, but no larger.
*/
static inline void get_min_align(uint16_t *align, uint16_t b)
{
if (*align < b) {
*align = b;
}
}
void *flatcc_builder_enter_user_frame_ptr(flatcc_builder_t *B, size_t size)
{
size_t *frame;
size = alignup_size(size, sizeof(size_t)) + sizeof(size_t);
if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) {
return 0;
}
memset(frame, 0, size);
*frame++ = B->user_frame_offset;
B->user_frame_offset = B->user_frame_end + sizeof(size_t);
B->user_frame_end += size;
return frame;
}
size_t flatcc_builder_enter_user_frame(flatcc_builder_t *B, size_t size)
{
size_t *frame;
size = alignup_size(size, sizeof(size_t)) + sizeof(size_t);
if (!(frame = reserve_buffer(B, flatcc_builder_alloc_us, B->user_frame_end, size, 0))) {
return 0;
}
memset(frame, 0, size);
*frame++ = B->user_frame_offset;
B->user_frame_offset = B->user_frame_end + sizeof(size_t);
B->user_frame_end += size;
return B->user_frame_offset;
}
size_t flatcc_builder_exit_user_frame(flatcc_builder_t *B)
{
size_t *hdr;
FLATCC_ASSERT(B->user_frame_offset > 0);
hdr = us_ptr(B->user_frame_offset);
B->user_frame_end = B->user_frame_offset - sizeof(size_t);
return B->user_frame_offset = hdr[-1];
}
size_t flatcc_builder_exit_user_frame_at(flatcc_builder_t *B, size_t handle)
{
FLATCC_ASSERT(B->user_frame_offset >= handle);
B->user_frame_offset = handle;
return flatcc_builder_exit_user_frame(B);
}
size_t flatcc_builder_get_current_user_frame(flatcc_builder_t *B)
{
return B->user_frame_offset;
}
void *flatcc_builder_get_user_frame_ptr(flatcc_builder_t *B, size_t handle)
{
return us_ptr(handle);
}
static int enter_frame(flatcc_builder_t *B, uint16_t align)
{
if (++B->level > B->limit_level) {
if (B->max_level > 0 && B->level > B->max_level) {
return -1;
}
if (!(B->frame = reserve_buffer(B, flatcc_builder_alloc_fs,
(size_t)(B->level - 1) * frame_size, frame_size, 0))) {
return -1;
}
B->limit_level = (int)(B->buffers[flatcc_builder_alloc_fs].iov_len / frame_size);
if (B->max_level > 0 && B->max_level < B->limit_level) {
B->limit_level = B->max_level;
}
} else {
++B->frame;
}
frame(ds_offset) = B->ds_offset;
frame(align) = B->align;
B->align = align;
/* Note: do not assume padding before first has been allocated! */
frame(ds_first) = B->ds_first;
frame(type_limit) = data_limit;
B->ds_first = alignup_uoffset(B->ds_first + B->ds_offset, 8);
B->ds_offset = 0;
return 0;
}
static inline void exit_frame(flatcc_builder_t *B)
{
memset(B->ds, 0, B->ds_offset);
B->ds_offset = frame(ds_offset);
B->ds_first = frame(ds_first);
refresh_ds(B, frame(type_limit));
/*
* Restore local alignment: e.g. a table should not change alignment
* because a child table was just created elsewhere in the buffer,
* but the overall alignment (min align), should be aware of it.
* Each buffer has its own min align that then migrates up without
* being affected by sibling or child buffers.
*/
set_min_align(B, B->align);
B->align = frame(align);
--B->frame;
--B->level;
}
static inline uoffset_t front_pad(flatcc_builder_t *B, uoffset_t size, uint16_t align)
{
return (uoffset_t)(B->emit_start - (flatcc_builder_ref_t)size) & (align - 1u);
}
static inline uoffset_t back_pad(flatcc_builder_t *B, uint16_t align)
{
return (uoffset_t)(B->emit_end) & (align - 1u);
}
static inline flatcc_builder_ref_t emit_front(flatcc_builder_t *B, iov_state_t *iov)
{
flatcc_builder_ref_t ref;
/*
* We might have overflow when including headers, but without
* headers we should have checks to prevent overflow in the
* uoffset_t range, hence we subtract 16 to be safe. With that
* guarantee we can also make a safe check on the soffset_t range.
*
* We only allow buffers half the theoritical size of
* FLATBUFFERS_UOFFSET_MAX so we can safely use signed references.
*
* NOTE: vtables vt_offset field is signed, and the check in create
* table only ensures the signed limit. The check would fail if the
* total buffer size could grow beyond UOFFSET_MAX, and we prevent
* that by limiting the lower end to SOFFSET_MIN, and the upper end
* at emit_back to SOFFSET_MAX.
*/
ref = B->emit_start - (flatcc_builder_ref_t)iov->len;
if ((iov->len > 16 && iov->len - 16 > FLATBUFFERS_UOFFSET_MAX) || ref >= B->emit_start) {
check(0, "buffer too large to represent");
return 0;
}
if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) {
check(0, "emitter rejected buffer content");
return 0;
}
return B->emit_start = ref;
}
static inline flatcc_builder_ref_t emit_back(flatcc_builder_t *B, iov_state_t *iov)
{
flatcc_builder_ref_t ref;
ref = B->emit_end;
B->emit_end = ref + (flatcc_builder_ref_t)iov->len;
/*
* Similar to emit_front check, but since we only emit vtables and
* padding at the back, we are not concerned with iov->len overflow,
* only total buffer overflow.
*
* With this check, vtable soffset references at table header can
* still overflow in extreme cases, so this must be checked
* separately.
*/
if (B->emit_end < ref) {
check(0, "buffer too large to represent");
return 0;
}
if (B->emit(B->emit_context, iov->iov, iov->count, ref, iov->len)) {
check(0, "emitter rejected buffer content");
return 0;
}
/*
* Back references always return ref + 1 because ref == 0 is valid and
* should not be mistaken for error. vtables understand this.
*/
return ref + 1;
}
/* If nested we cannot pad the end of the buffer without moving the entire buffer, so we don't. */
static int align_buffer_end(flatcc_builder_t *B, uint16_t *align, uint16_t block_align, int is_nested)
{
size_t end_pad;
iov_state_t iov;
block_align = block_align ? block_align : B->block_align ? B->block_align : 1;
get_min_align(align, field_size);
get_min_align(align, block_align);
/* Pad end of buffer to multiple. */
if (!is_nested) {
end_pad = back_pad(B, *align);
if (end_pad) {
init_iov();
push_iov(_pad, end_pad);
if (0 == emit_back(B, &iov)) {
check(0, "emitter rejected buffer content");
return -1;
}
}
}
return 0;
}
flatcc_builder_ref_t flatcc_builder_embed_buffer(flatcc_builder_t *B,
uint16_t block_align,
const void *data, size_t size, uint16_t align, flatcc_builder_buffer_flags_t flags)
{
uoffset_t size_field, pad;
iov_state_t iov;
int with_size = (flags & flatcc_builder_with_size) != 0;
if (align_buffer_end(B, &align, block_align, !is_top_buffer(B))) {
return 0;
}
pad = front_pad(B, (uoffset_t)(size + (with_size ? field_size : 0)), align);
write_uoffset(&size_field, (uoffset_t)size + pad);
init_iov();
/* Add ubyte vector size header if nested buffer. */
push_iov_cond(&size_field, field_size, !is_top_buffer(B));
push_iov(data, size);
push_iov(_pad, pad);
return emit_front(B, &iov);
}
flatcc_builder_ref_t flatcc_builder_create_buffer(flatcc_builder_t *B,
const char identifier[identifier_size], uint16_t block_align,
flatcc_builder_ref_t object_ref, uint16_t align, flatcc_builder_buffer_flags_t flags)
{
flatcc_builder_ref_t buffer_ref;
uoffset_t header_pad, id_size = 0;
uoffset_t object_offset, buffer_size, buffer_base;
iov_state_t iov;
flatcc_builder_identifier_t id_out = 0;
int is_nested = (flags & flatcc_builder_is_nested) != 0;
int with_size = (flags & flatcc_builder_with_size) != 0;
if (align_buffer_end(B, &align, block_align, is_nested)) {
return 0;
}
set_min_align(B, align);
if (identifier) {
FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == identifier_size);
FLATCC_ASSERT(sizeof(flatcc_builder_identifier_t) == field_size);
memcpy(&id_out, identifier, identifier_size);
id_out = __flatbuffers_thash_read_from_le(&id_out);
write_identifier(&id_out, id_out);
}
id_size = id_out ? identifier_size : 0;
header_pad = front_pad(B, field_size + id_size + (uoffset_t)(with_size ? field_size : 0), align);
init_iov();
/* ubyte vectors size field wrapping nested buffer. */
push_iov_cond(&buffer_size, field_size, is_nested || with_size);
push_iov(&object_offset, field_size);
/* Identifiers are not always present in buffer. */
push_iov(&id_out, id_size);
push_iov(_pad, header_pad);
buffer_base = (uoffset_t)B->emit_start - (uoffset_t)iov.len + (uoffset_t)((is_nested || with_size) ? field_size : 0);
if (is_nested) {
write_uoffset(&buffer_size, (uoffset_t)B->buffer_mark - buffer_base);
} else {
/* Also include clustered vtables. */
write_uoffset(&buffer_size, (uoffset_t)B->emit_end - buffer_base);
}
write_uoffset(&object_offset, (uoffset_t)object_ref - buffer_base);
if (0 == (buffer_ref = emit_front(B, &iov))) {
check(0, "emitter rejected buffer content");
return 0;
}
return buffer_ref;
}
flatcc_builder_ref_t flatcc_builder_create_struct(flatcc_builder_t *B, const void *data, size_t size, uint16_t align)
{
size_t pad;
iov_state_t iov;
check(align >= 1, "align cannot be 0");
set_min_align(B, align);
pad = front_pad(B, (uoffset_t)size, align);
init_iov();
push_iov(data, size);
/*
* Normally structs will already be a multiple of their alignment,
* so this padding will not likely be emitted.
*/
push_iov(_pad, pad);
return emit_front(B, &iov);
}
int flatcc_builder_start_buffer(flatcc_builder_t *B,
const char identifier[identifier_size], uint16_t block_align, flatcc_builder_buffer_flags_t flags)
{
/*
* This saves the parent `min_align` in the align field since we
* shouldn't use that for the current buffer. `exit_frame`
* automatically aggregates align up, so it is updated when the
* buffer frame exits.
*/
if (enter_frame(B, B->min_align)) {
return -1;
}
/* B->align now has parent min_align, and child frames will save it. */
/* Since we allow objects to be created before the buffer at top level,
we need to respect min_align in that case. */
if (!is_top_buffer(B) || B->min_align == 0) {
B->min_align = 1;
}
/* Save the parent block align, and set proper defaults for this buffer. */
frame(container.buffer.block_align) = B->block_align;
B->block_align = block_align;
frame(container.buffer.flags = B->buffer_flags);
B->buffer_flags = (uint16_t)flags;
frame(container.buffer.mark) = B->buffer_mark;
frame(container.buffer.nest_id) = B->nest_id;
/*
* End of buffer when nested. Not defined for top-level because we
* here (on only here) permit strings etc. to be created before buffer start and
* because top-level buffer vtables can be clustered.
*/
B->buffer_mark = B->emit_start;
/* Must be 0 before and after entering top-level buffer, and unique otherwise. */
B->nest_id = B->nest_count++;
frame(container.buffer.identifier) = B->identifier;
set_identifier(identifier);
frame(type) = flatcc_builder_buffer;
return 0;
}
flatcc_builder_ref_t flatcc_builder_end_buffer(flatcc_builder_t *B, flatcc_builder_ref_t root)
{
flatcc_builder_ref_t buffer_ref;
flatcc_builder_buffer_flags_t flags;
flags = (flatcc_builder_buffer_flags_t)B->buffer_flags & flatcc_builder_with_size;
flags |= is_top_buffer(B) ? 0 : flatcc_builder_is_nested;
check(frame(type) == flatcc_builder_buffer, "expected buffer frame");
set_min_align(B, B->block_align);
if (0 == (buffer_ref = flatcc_builder_create_buffer(B, (void *)&B->identifier,
B->block_align, root, B->min_align, flags))) {
return 0;
}
B->buffer_mark = frame(container.buffer.mark);
B->nest_id = frame(container.buffer.nest_id);
B->identifier = frame(container.buffer.identifier);
B->buffer_flags = frame(container.buffer.flags);
B->block_align = frame(container.buffer.block_align);
exit_frame(B);
return buffer_ref;
}
void *flatcc_builder_start_struct(flatcc_builder_t *B, size_t size, uint16_t align)
{
/* Allocate space for the struct on the ds stack. */
if (enter_frame(B, align)) {
return 0;
}
frame(type) = flatcc_builder_struct;
refresh_ds(B, data_limit);
return push_ds(B, (uoffset_t)size);
}
void *flatcc_builder_struct_edit(flatcc_builder_t *B)
{
return B->ds;
}
flatcc_builder_ref_t flatcc_builder_end_struct(flatcc_builder_t *B)
{
flatcc_builder_ref_t object_ref;
check(frame(type) == flatcc_builder_struct, "expected struct frame");
if (0 == (object_ref = flatcc_builder_create_struct(B, B->ds, B->ds_offset, B->align))) {
return 0;
}
exit_frame(B);
return object_ref;
}
static inline int vector_count_add(flatcc_builder_t *B, uoffset_t count, uoffset_t max_count)
{
uoffset_t n, n1;
n = frame(container.vector.count);
n1 = n + count;
/*
* This prevents elem_size * count from overflowing iff max_vector
* has been set sensible. Without this check we might allocate to
* little on the ds stack and return a buffer the user thinks is
* much larger which of course is bad even though the buffer eventually
* would fail anyway.
*/
check_error(n <= n1 && n1 <= max_count, -1, "vector too large to represent");
frame(container.vector.count) = n1;
return 0;
}
void *flatcc_builder_extend_vector(flatcc_builder_t *B, size_t count)
{
if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) {
return 0;
}
return push_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
}
void *flatcc_builder_vector_push(flatcc_builder_t *B, const void *data)
{
check(frame(type) == flatcc_builder_vector, "expected vector frame");
check_error(frame(container.vector.count) <= frame(container.vector.max_count), 0, "vector max count exceeded");
frame(container.vector.count) += 1;
return push_ds_copy(B, data, frame(container.vector.elem_size));
}
void *flatcc_builder_append_vector(flatcc_builder_t *B, const void *data, size_t count)
{
check(frame(type) == flatcc_builder_vector, "expected vector frame");
if (vector_count_add(B, (uoffset_t)count, frame(container.vector.max_count))) {
return 0;
}
return push_ds_copy(B, data, frame(container.vector.elem_size) * (uoffset_t)count);
}
flatcc_builder_ref_t *flatcc_builder_extend_offset_vector(flatcc_builder_t *B, size_t count)
{
if (vector_count_add(B, (uoffset_t)count, max_offset_count)) {
return 0;
}
return push_ds(B, (uoffset_t)(field_size * count));
}
flatcc_builder_ref_t *flatcc_builder_offset_vector_push(flatcc_builder_t *B, flatcc_builder_ref_t ref)
{
flatcc_builder_ref_t *p;
check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
if (frame(container.vector.count) == max_offset_count) {
return 0;
}
frame(container.vector.count) += 1;
if (0 == (p = push_ds(B, field_size))) {
return 0;
}
*p = ref;
return p;
}
flatcc_builder_ref_t *flatcc_builder_append_offset_vector(flatcc_builder_t *B, const flatcc_builder_ref_t *refs, size_t count)
{
check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
if (vector_count_add(B, (uoffset_t)count, max_offset_count)) {
return 0;
}
return push_ds_copy(B, refs, (uoffset_t)(field_size * count));
}
char *flatcc_builder_extend_string(flatcc_builder_t *B, size_t len)
{
check(frame(type) == flatcc_builder_string, "expected string frame");
if (vector_count_add(B, (uoffset_t)len, max_string_len)) {
return 0;
}
return push_ds(B, (uoffset_t)len);
}
char *flatcc_builder_append_string(flatcc_builder_t *B, const char *s, size_t len)
{
check(frame(type) == flatcc_builder_string, "expected string frame");
if (vector_count_add(B, (uoffset_t)len, max_string_len)) {
return 0;
}
return push_ds_copy(B, s, (uoffset_t)len);
}
char *flatcc_builder_append_string_str(flatcc_builder_t *B, const char *s)
{
return flatcc_builder_append_string(B, s, strlen(s));
}
char *flatcc_builder_append_string_strn(flatcc_builder_t *B, const char *s, size_t max_len)
{
return flatcc_builder_append_string(B, s, strnlen(s, max_len));
}
int flatcc_builder_truncate_vector(flatcc_builder_t *B, size_t count)
{
check(frame(type) == flatcc_builder_vector, "expected vector frame");
check_error(frame(container.vector.count) >= count, -1, "cannot truncate vector past empty");
frame(container.vector.count) -= (uoffset_t)count;
unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
return 0;
}
int flatcc_builder_truncate_offset_vector(flatcc_builder_t *B, size_t count)
{
check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty");
frame(container.vector.count) -= (uoffset_t)count;
unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
return 0;
}
int flatcc_builder_truncate_string(flatcc_builder_t *B, size_t len)
{
check(frame(type) == flatcc_builder_string, "expected string frame");
check_error(frame(container.vector.count) >= len, -1, "cannot truncate string past empty");
frame(container.vector.count) -= (uoffset_t)len;
unpush_ds(B, (uoffset_t)len);
return 0;
}
int flatcc_builder_start_vector(flatcc_builder_t *B, size_t elem_size, uint16_t align, size_t max_count)
{
get_min_align(&align, field_size);
if (enter_frame(B, align)) {
return -1;
}
frame(container.vector.elem_size) = (uoffset_t)elem_size;
frame(container.vector.count) = 0;
frame(container.vector.max_count) = (uoffset_t)max_count;
frame(type) = flatcc_builder_vector;
refresh_ds(B, data_limit);
return 0;
}
int flatcc_builder_start_offset_vector(flatcc_builder_t *B)
{
if (enter_frame(B, field_size)) {
return -1;
}
frame(container.vector.elem_size) = field_size;
frame(container.vector.count) = 0;
frame(type) = flatcc_builder_offset_vector;
refresh_ds(B, data_limit);
return 0;
}
flatcc_builder_ref_t flatcc_builder_create_offset_vector(flatcc_builder_t *B,
const flatcc_builder_ref_t *vec, size_t count)
{
flatcc_builder_ref_t *_vec;
if (flatcc_builder_start_offset_vector(B)) {
return 0;
}
if (!(_vec = flatcc_builder_extend_offset_vector(B, count))) {
return 0;
}
memcpy(_vec, vec, count * field_size);
return flatcc_builder_end_offset_vector(B);
}
int flatcc_builder_start_string(flatcc_builder_t *B)
{
if (enter_frame(B, 1)) {
return -1;
}
frame(container.vector.elem_size) = 1;
frame(container.vector.count) = 0;
frame(type) = flatcc_builder_string;
refresh_ds(B, data_limit);
return 0;
}
int flatcc_builder_reserve_table(flatcc_builder_t *B, int count)
{
check(count >= 0, "cannot reserve negative count");
return reserve_fields(B, count);
}
int flatcc_builder_start_table(flatcc_builder_t *B, int count)
{
if (enter_frame(B, field_size)) {
return -1;
}
frame(container.table.vs_end) = vs_offset(B->vs);
frame(container.table.pl_end) = pl_offset(B->pl);
frame(container.table.vt_hash) = B->vt_hash;
frame(container.table.id_end) = B->id_end;
B->vt_hash = 0;
FLATCC_BUILDER_INIT_VT_HASH(B->vt_hash);
B->id_end = 0;
frame(type) = flatcc_builder_table;
if (reserve_fields(B, count)) {
return -1;
}
refresh_ds(B, table_limit);
return 0;
}
flatcc_builder_vt_ref_t flatcc_builder_create_vtable(flatcc_builder_t *B,
const voffset_t *vt, voffset_t vt_size)
{
flatcc_builder_vt_ref_t vt_ref;
iov_state_t iov;
voffset_t *vt_;
size_t i;
/*
* Only top-level buffer can cluster vtables because only it can
* extend beyond the end.
*
* We write the vtable after the referencing table to maintain
* the construction invariant that any offset reference has
* valid emitted data at a higher address, and also that any
* issued negative emit address represents an offset reference
* to some flatbuffer object or vector (or possibly a root
* struct).
*
* The vt_ref is stored as the reference + 1 to avoid having 0 as a
* valid reference (which usally means error). It also idententifies
* vtable references as the only uneven references, and the only
* references that can be used multiple times in the same buffer.
*
* We do the vtable conversion here so cached vtables can be built
* hashed and compared more efficiently, and so end users with
* direct vtable construction don't have to worry about endianness.
* This also ensures the hash function works the same wrt.
* collision frequency.
*/
if (!flatbuffers_is_native_pe()) {
/* Make space in vtable cache for temporary endian conversion. */
if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) {
return 0;
}
for (i = 0; i < vt_size / sizeof(voffset_t); ++i) {
write_voffset(&vt_[i], vt[i]);
}
vt = vt_;
/* We don't need to free the reservation since we don't advance any base pointer. */
}
init_iov();
push_iov(vt, vt_size);
if (is_top_buffer(B) && !B->disable_vt_clustering) {
/* Note that `emit_back` already returns ref + 1 as we require for vtables. */
if (0 == (vt_ref = emit_back(B, &iov))) {
return 0;
}
} else {
if (0 == (vt_ref = emit_front(B, &iov))) {
return 0;
}
/*
* We don't have a valid 0 ref here, but to be consistent with
* clustered vtables we offset by one. This cannot be zero
* either.
*/
vt_ref += 1;
}
return vt_ref;
}
flatcc_builder_vt_ref_t flatcc_builder_create_cached_vtable(flatcc_builder_t *B,
const voffset_t *vt, voffset_t vt_size, uint32_t vt_hash)
{
vtable_descriptor_t *vd, *vd2;
uoffset_t *pvd, *pvd_head;
uoffset_t next;
voffset_t *vt_;
/* This just gets the hash table slot, we still have to inspect it. */
if (!(pvd_head = lookup_ht(B, vt_hash))) {
return 0;
}
pvd = pvd_head;
next = *pvd;
/* Tracks if there already is a cached copy. */
vd2 = 0;
while (next) {
vd = vd_ptr(next);
vt_ = vb_ptr(vd->vb_start);
if (vt_[0] != vt_size || 0 != memcmp(vt, vt_, vt_size)) {
pvd = &vd->next;
next = vd->next;
continue;
}
/* Can't share emitted vtables between buffers, */
if (vd->nest_id != B->nest_id) {
/* but we don't have to resubmit to cache. */
vd2 = vd;
/* See if there is a better match. */
pvd = &vd->next;
next = vd->next;
continue;
}
/* Move to front hash strategy. */
if (pvd != pvd_head) {
*pvd = vd->next;
vd->next = *pvd_head;
*pvd_head = next;
}
/* vtable exists and has been emitted within current buffer. */
return vd->vt_ref;
}
/* Allocate new descriptor. */
if (!(vd = reserve_buffer(B, flatcc_builder_alloc_vd, B->vd_end, sizeof(vtable_descriptor_t), 0))) {
return 0;
}
next = B->vd_end;
B->vd_end += (uoffset_t)sizeof(vtable_descriptor_t);
/* Identify the buffer this vtable descriptor belongs to. */
vd->nest_id = B->nest_id;
/* Move to front hash strategy. */
vd->next = *pvd_head;
*pvd_head = next;
if (0 == (vd->vt_ref = flatcc_builder_create_vtable(B, vt, vt_size))) {
return 0;
}
if (vd2) {
/* Reuse cached copy. */
vd->vb_start = vd2->vb_start;
} else {
if (B->vb_flush_limit && B->vb_flush_limit < B->vb_end + vt_size) {
flatcc_builder_flush_vtable_cache(B);
} else {
/* Make space in vtable cache. */
if (!(vt_ = reserve_buffer(B, flatcc_builder_alloc_vb, B->vb_end, vt_size, 0))) {
return -1;
}
vd->vb_start = B->vb_end;
B->vb_end += vt_size;
memcpy(vt_, vt, vt_size);
}
}
return vd->vt_ref;
}
flatcc_builder_ref_t flatcc_builder_create_table(flatcc_builder_t *B, const void *data, size_t size, uint16_t align,
flatbuffers_voffset_t *offsets, int offset_count, flatcc_builder_vt_ref_t vt_ref)
{
int i;
uoffset_t pad, vt_offset, vt_offset_field, vt_base, base, offset, *offset_field;
iov_state_t iov;
check(offset_count >= 0, "expected non-negative offset_count");
/*
* vtable references are offset by 1 to avoid confusion with
* 0 as an error reference. It also uniquely identifies them
* as vtables being the only uneven reference type.
*/
check(vt_ref & 1, "invalid vtable referenc");
get_min_align(&align, field_size);
set_min_align(B, align);
/* Alignment is calculated for the first element, not the header. */
pad = front_pad(B, (uoffset_t)size, align);
base = (uoffset_t)B->emit_start - (uoffset_t)(pad + size + field_size);
/* Adjust by 1 to get unencoded vtable reference. */
vt_base = (uoffset_t)(vt_ref - 1);
vt_offset = base - vt_base;
/* Avoid overflow. */
if (base - vt_offset != vt_base) {
return -1;
}
/* Protocol endian encoding. */
write_uoffset(&vt_offset_field, vt_offset);
for (i = 0; i < offset_count; ++i) {
offset_field = (uoffset_t *)((size_t)data + offsets[i]);
offset = *offset_field - base - offsets[i] - (uoffset_t)field_size;
write_uoffset(offset_field, offset);
}
init_iov();
push_iov(&vt_offset_field, field_size);
push_iov(data, size);
push_iov(_pad, pad);
return emit_front(B, &iov);
}
int flatcc_builder_check_required_field(flatcc_builder_t *B, flatbuffers_voffset_t id)
{
check(frame(type) == flatcc_builder_table, "expected table frame");
return id < B->id_end && B->vs[id] != 0;
}
int flatcc_builder_check_union_field(flatcc_builder_t *B, flatbuffers_voffset_t id)
{
check(frame(type) == flatcc_builder_table, "expected table frame");
if (id == 0 || id >= B->id_end) {
return 0;
}
if (B->vs[id - 1] == 0) {
return B->vs[id] == 0;
}
if (*(uint8_t *)(B->ds + B->vs[id - 1])) {
return B->vs[id] != 0;
}
return B->vs[id] == 0;
}
int flatcc_builder_check_required(flatcc_builder_t *B, const flatbuffers_voffset_t *required, int count)
{
int i;
check(frame(type) == flatcc_builder_table, "expected table frame");
if (B->id_end < count) {
return 0;
}
for (i = 0; i < count; ++i) {
if (B->vs[required[i]] == 0) {
return 0;
}
}
return 1;
}
flatcc_builder_ref_t flatcc_builder_end_table(flatcc_builder_t *B)
{
voffset_t *vt, vt_size;
flatcc_builder_ref_t table_ref, vt_ref;
int pl_count;
voffset_t *pl;
size_t tsize;
check(frame(type) == flatcc_builder_table, "expected table frame");
/* We have `ds_limit`, so we should not have to check for overflow here. */
vt = B->vs - 2;
vt_size = (voffset_t)(sizeof(voffset_t) * (B->id_end + 2u));
/* Update vtable header fields, first vtable size, then object table size. */
vt[0] = vt_size;
/*
* The `ds` buffer is always at least `field_size` aligned but excludes the
* initial vtable offset field. Therefore `field_size` is added here
* to the total table size in the vtable.
*/
tsize = (size_t)(B->ds_offset + field_size);
/*
* Tables are limited to 64K in standard FlatBuffers format due to the voffset
* 16 bit size, but we must also be able to store the table size, so the
* table payload has to be slightly less than that.
*/
check(tsize <= FLATBUFFERS_VOFFSET_MAX, "table too large");
vt[1] = (voffset_t)tsize;
FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)vt[0], (uint32_t)vt[1]);
/* Find already emitted vtable, or emit a new one. */
if (!(vt_ref = flatcc_builder_create_cached_vtable(B, vt, vt_size, B->vt_hash))) {
return 0;
}
/* Clear vs stack so it is ready for the next vtable (ds stack is cleared by exit frame). */
memset(vt, 0, vt_size);
pl = pl_ptr(frame(container.table.pl_end));
pl_count = (int)(B->pl - pl);
if (0 == (table_ref = flatcc_builder_create_table(B, B->ds, B->ds_offset, B->align, pl, pl_count, vt_ref))) {
return 0;
}
B->vt_hash = frame(container.table.vt_hash);
B->id_end = frame(container.table.id_end);
B->vs = vs_ptr(frame(container.table.vs_end));
B->pl = pl_ptr(frame(container.table.pl_end));
exit_frame(B);
return table_ref;
}
flatcc_builder_ref_t flatcc_builder_create_vector(flatcc_builder_t *B,
const void *data, size_t count, size_t elem_size, uint16_t align, size_t max_count)
{
/*
* Note: it is important that vec_size is uoffset not size_t
* in case sizeof(uoffset_t) > sizeof(size_t) because max_count is
* defined in terms of uoffset_t representation size, and also
* because we risk accepting too large a vector even if max_count is
* not violated.
*/
uoffset_t vec_size, vec_pad, length_prefix;
iov_state_t iov;
check_error(count <= max_count, 0, "vector max_count violated");
get_min_align(&align, field_size);
set_min_align(B, align);
vec_size = (uoffset_t)count * (uoffset_t)elem_size;
/*
* That can happen on 32 bit systems when uoffset_t is defined as 64-bit.
* `emit_front/back` captures overflow, but not if our size type wraps first.
*/
#if FLATBUFFERS_UOFFSET_MAX > SIZE_MAX
check_error(vec_size < SIZE_MAX, 0, "vector larger than address space");
#endif
write_uoffset(&length_prefix, (uoffset_t)count);
/* Alignment is calculated for the first element, not the header. */
vec_pad = front_pad(B, vec_size, align);
init_iov();
push_iov(&length_prefix, field_size);
push_iov(data, vec_size);
push_iov(_pad, vec_pad);
return emit_front(B, &iov);
}
/*
* Note: FlatBuffers official documentation states that the size field of a
* vector is a 32-bit element count. It is not quite clear if the
* intention is to have the size field be of type uoffset_t since tables
* also have a uoffset_t sized header, or if the vector size should
* remain unchanged if uoffset is changed to 16- or 64-bits
* respectively. Since it makes most sense to have a vector compatible
* with the addressable space, we choose to use uoffset_t as size field,
* which remains compatible with the default 32-bit version of uoffset_t.
*/
flatcc_builder_ref_t flatcc_builder_end_vector(flatcc_builder_t *B)
{
flatcc_builder_ref_t vector_ref;
check(frame(type) == flatcc_builder_vector, "expected vector frame");
if (0 == (vector_ref = flatcc_builder_create_vector(B, B->ds,
frame(container.vector.count), frame(container.vector.elem_size),
B->align, frame(container.vector.max_count)))) {
return 0;
}
exit_frame(B);
return vector_ref;
}
size_t flatcc_builder_vector_count(flatcc_builder_t *B)
{
return frame(container.vector.count);
}
void *flatcc_builder_vector_edit(flatcc_builder_t *B)
{
return B->ds;
}
/* This function destroys the source content but avoids stack allocation. */
static flatcc_builder_ref_t _create_offset_vector_direct(flatcc_builder_t *B,
flatcc_builder_ref_t *vec, size_t count, const utype_t *types)
{
uoffset_t vec_size, vec_pad;
uoffset_t length_prefix, offset;
uoffset_t i;
soffset_t base;
iov_state_t iov;
if ((uoffset_t)count > max_offset_count) {
return 0;
}
set_min_align(B, field_size);
vec_size = (uoffset_t)(count * field_size);
write_uoffset(&length_prefix, (uoffset_t)count);
/* Alignment is calculated for the first element, not the header. */
vec_pad = front_pad(B, vec_size, field_size);
init_iov();
push_iov(&length_prefix, field_size);
push_iov(vec, vec_size);
push_iov(_pad, vec_pad);
base = B->emit_start - (soffset_t)iov.len;
for (i = 0; i < (uoffset_t)count; ++i) {
/*
* 0 is either end of buffer, start of vtables, or start of
* buffer depending on the direction in which the buffer is
* built. None of these can create a valid 0 reference but it
* is easy to create by mistake when manually building offset
* vectors.
*
* Unions do permit nulls, but only when the type is NONE.
*/
if (vec[i] != 0) {
offset = (uoffset_t)
(vec[i] - base - (soffset_t)(i * field_size) - (soffset_t)field_size);
write_uoffset(&vec[i], offset);
if (types) {
check(types[i] != 0, "union vector cannot have non-null element with type NONE");
}
} else {
if (types) {
check(types[i] == 0, "union vector cannot have null element without type NONE");
} else {
check(0, "offset vector cannot have null element");
}
}
}
return emit_front(B, &iov);
}
flatcc_builder_ref_t flatcc_builder_create_offset_vector_direct(flatcc_builder_t *B,
flatcc_builder_ref_t *vec, size_t count)
{
return _create_offset_vector_direct(B, vec, count, 0);
}
flatcc_builder_ref_t flatcc_builder_end_offset_vector(flatcc_builder_t *B)
{
flatcc_builder_ref_t vector_ref;
check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
if (0 == (vector_ref = flatcc_builder_create_offset_vector_direct(B,
(flatcc_builder_ref_t *)B->ds, frame(container.vector.count)))) {
return 0;
}
exit_frame(B);
return vector_ref;
}
flatcc_builder_ref_t flatcc_builder_end_offset_vector_for_unions(flatcc_builder_t *B, const utype_t *types)
{
flatcc_builder_ref_t vector_ref;
check(frame(type) == flatcc_builder_offset_vector, "expected offset vector frame");
if (0 == (vector_ref = _create_offset_vector_direct(B,
(flatcc_builder_ref_t *)B->ds, frame(container.vector.count), types))) {
return 0;
}
exit_frame(B);
return vector_ref;
}
void *flatcc_builder_offset_vector_edit(flatcc_builder_t *B)
{
return B->ds;
}
size_t flatcc_builder_offset_vector_count(flatcc_builder_t *B)
{
return frame(container.vector.count);
}
int flatcc_builder_table_add_union(flatcc_builder_t *B, int id,
flatcc_builder_union_ref_t uref)
{
flatcc_builder_ref_t *pref;
flatcc_builder_utype_t *putype;
check(frame(type) == flatcc_builder_table, "expected table frame");
check_error(uref.type != 0 || uref.value == 0, -1, "expected null value for type NONE");
if (uref.value != 0) {
pref = flatcc_builder_table_add_offset(B, id);
check_error(pref != 0, -1, "unable to add union value");
*pref = uref.value;
}
putype = flatcc_builder_table_add(B, id - 1, utype_size, utype_size);
check_error(putype != 0, -1, "unable to add union type");
write_utype(putype, uref.type);
return 0;
}
int flatcc_builder_table_add_union_vector(flatcc_builder_t *B, int id,
flatcc_builder_union_vec_ref_t uvref)
{
flatcc_builder_ref_t *pref;
check(frame(type) == flatcc_builder_table, "expected table frame");
check_error((uvref.type == 0) == (uvref.value == 0), -1, "expected both type and value vector, or neither");
if (uvref.type != 0) {
pref = flatcc_builder_table_add_offset(B, id - 1);
check_error(pref != 0, -1, "unable to add union member");
*pref = uvref.type;
pref = flatcc_builder_table_add_offset(B, id);
check_error(pref != 0, -1, "unable to add union member");
*pref = uvref.value;
}
return 0;
}
flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector(flatcc_builder_t *B,
const flatcc_builder_union_ref_t *urefs, size_t count)
{
flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
flatcc_builder_utype_t *types;
flatcc_builder_ref_t *refs;
size_t i;
if (flatcc_builder_start_offset_vector(B)) {
return uvref;
}
if (0 == flatcc_builder_extend_offset_vector(B, count)) {
return uvref;
}
if (0 == (types = push_ds(B, (uoffset_t)(utype_size * count)))) {
return uvref;
}
/* Safe even if push_ds caused stack reallocation. */
refs = flatcc_builder_offset_vector_edit(B);
for (i = 0; i < count; ++i) {
types[i] = urefs[i].type;
refs[i] = urefs[i].value;
}
uvref = flatcc_builder_create_union_vector_direct(B,
types, refs, count);
/* No need to clean up after out temporary types vector. */
exit_frame(B);
return uvref;
}
flatcc_builder_union_vec_ref_t flatcc_builder_create_union_vector_direct(flatcc_builder_t *B,
const flatcc_builder_utype_t *types, flatcc_builder_ref_t *data, size_t count)
{
flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
if (0 == (uvref.value = _create_offset_vector_direct(B, data, count, types))) {
return uvref;
}
if (0 == (uvref.type = flatcc_builder_create_type_vector(B, types, count))) {
return uvref;
}
return uvref;
}
flatcc_builder_ref_t flatcc_builder_create_type_vector(flatcc_builder_t *B,
const flatcc_builder_utype_t *types, size_t count)
{
return flatcc_builder_create_vector(B, types, count,
utype_size, utype_size, max_utype_count);
}
int flatcc_builder_start_union_vector(flatcc_builder_t *B)
{
if (enter_frame(B, field_size)) {
return -1;
}
frame(container.vector.elem_size) = union_size;
frame(container.vector.count) = 0;
frame(type) = flatcc_builder_union_vector;
refresh_ds(B, data_limit);
return 0;
}
flatcc_builder_union_vec_ref_t flatcc_builder_end_union_vector(flatcc_builder_t *B)
{
flatcc_builder_union_vec_ref_t uvref = { 0, 0 };
flatcc_builder_utype_t *types;
flatcc_builder_union_ref_t *urefs;
flatcc_builder_ref_t *refs;
size_t i, count;
check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
/*
* We could split the union vector in-place, but then we would have
* to deal with strict pointer aliasing rules which is not worthwhile
* so we create a new offset and type vector on the stack.
*
* We assume the stack is sufficiently aligned as is.
*/
count = flatcc_builder_union_vector_count(B);
if (0 == (refs = push_ds(B, (uoffset_t)(count * (utype_size + field_size))))) {
return uvref;
}
types = (flatcc_builder_utype_t *)(refs + count);
/* Safe even if push_ds caused stack reallocation. */
urefs = flatcc_builder_union_vector_edit(B);
for (i = 0; i < count; ++i) {
types[i] = urefs[i].type;
refs[i] = urefs[i].value;
}
uvref = flatcc_builder_create_union_vector_direct(B, types, refs, count);
/* No need to clean up after out temporary types vector. */
exit_frame(B);
return uvref;
}
void *flatcc_builder_union_vector_edit(flatcc_builder_t *B)
{
return B->ds;
}
size_t flatcc_builder_union_vector_count(flatcc_builder_t *B)
{
return frame(container.vector.count);
}
flatcc_builder_union_ref_t *flatcc_builder_extend_union_vector(flatcc_builder_t *B, size_t count)
{
if (vector_count_add(B, (uoffset_t)count, max_union_count)) {
return 0;
}
return push_ds(B, (uoffset_t)(union_size * count));
}
int flatcc_builder_truncate_union_vector(flatcc_builder_t *B, size_t count)
{
check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
check_error(frame(container.vector.count) >= (uoffset_t)count, -1, "cannot truncate vector past empty");
frame(container.vector.count) -= (uoffset_t)count;
unpush_ds(B, frame(container.vector.elem_size) * (uoffset_t)count);
return 0;
}
flatcc_builder_union_ref_t *flatcc_builder_union_vector_push(flatcc_builder_t *B,
flatcc_builder_union_ref_t uref)
{
flatcc_builder_union_ref_t *p;
check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
if (frame(container.vector.count) == max_union_count) {
return 0;
}
frame(container.vector.count) += 1;
if (0 == (p = push_ds(B, union_size))) {
return 0;
}
*p = uref;
return p;
}
flatcc_builder_union_ref_t *flatcc_builder_append_union_vector(flatcc_builder_t *B,
const flatcc_builder_union_ref_t *urefs, size_t count)
{
check(frame(type) == flatcc_builder_union_vector, "expected union vector frame");
if (vector_count_add(B, (uoffset_t)count, max_union_count)) {
return 0;
}
return push_ds_copy(B, urefs, (uoffset_t)(union_size * count));
}
flatcc_builder_ref_t flatcc_builder_create_string(flatcc_builder_t *B, const char *s, size_t len)
{
uoffset_t s_pad;
uoffset_t length_prefix;
iov_state_t iov;
if (len > max_string_len) {
return 0;
}
write_uoffset(&length_prefix, (uoffset_t)len);
/* Add 1 for zero termination. */
s_pad = front_pad(B, (uoffset_t)len + 1, field_size) + 1;
init_iov();
push_iov(&length_prefix, field_size);
push_iov(s, len);
push_iov(_pad, s_pad);
return emit_front(B, &iov);
}
flatcc_builder_ref_t flatcc_builder_create_string_str(flatcc_builder_t *B, const char *s)
{
return flatcc_builder_create_string(B, s, strlen(s));
}
flatcc_builder_ref_t flatcc_builder_create_string_strn(flatcc_builder_t *B, const char *s, size_t max_len)
{
return flatcc_builder_create_string(B, s, strnlen(s, max_len));
}
flatcc_builder_ref_t flatcc_builder_end_string(flatcc_builder_t *B)
{
flatcc_builder_ref_t string_ref;
check(frame(type) == flatcc_builder_string, "expected string frame");
FLATCC_ASSERT(frame(container.vector.count) == B->ds_offset);
if (0 == (string_ref = flatcc_builder_create_string(B,
(const char *)B->ds, B->ds_offset))) {
return 0;
}
exit_frame(B);
return string_ref;
}
char *flatcc_builder_string_edit(flatcc_builder_t *B)
{
return (char *)B->ds;
}
size_t flatcc_builder_string_len(flatcc_builder_t *B)
{
return frame(container.vector.count);
}
void *flatcc_builder_table_add(flatcc_builder_t *B, int id, size_t size, uint16_t align)
{
/*
* We align the offset relative to the first table field, excluding
* the header holding the vtable reference. On the stack, `ds_first`
* is aligned to 8 bytes thanks to the `enter_frame` logic, and this
* provides a safe way to update the fields on the stack, but here
* we are concerned with the target buffer alignment.
*
* We could also have aligned relative to the end of the table which
* would allow us to emit each field immediately, but it would be a
* confusing user experience wrt. field ordering, and it would add
* more variability to vtable layouts, thus reducing reuse, and
* frequent emissions to external emitter interface would be
* sub-optimal. Also, with that appoach, the vtable offsets would
* have to be adjusted at table end.
*
* As we have it, each emit occur at table end, vector end, string
* end, or buffer end, which might be helpful to various backend
* processors.
*/
check(frame(type) == flatcc_builder_table, "expected table frame");
check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range");
if (align > B->align) {
B->align = align;
}
#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD
if (B->vs[id] != 0) {
return B->ds + B->vs[id] - field_size;
}
#else
if (B->vs[id] != 0) {
check(0, "table field already set");
return 0;
}
#endif
FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)size);
return push_ds_field(B, (uoffset_t)size, align, (voffset_t)id);
}
void *flatcc_builder_table_edit(flatcc_builder_t *B, size_t size)
{
check(frame(type) == flatcc_builder_table, "expected table frame");
return B->ds + B->ds_offset - size;
}
void *flatcc_builder_table_add_copy(flatcc_builder_t *B, int id, const void *data, size_t size, uint16_t align)
{
void *p;
if ((p = flatcc_builder_table_add(B, id, size, align))) {
memcpy(p, data, size);
}
return p;
}
flatcc_builder_ref_t *flatcc_builder_table_add_offset(flatcc_builder_t *B, int id)
{
check(frame(type) == flatcc_builder_table, "expected table frame");
check(id >= 0 && id <= (int)FLATBUFFERS_ID_MAX, "table id out of range");
#if FLATCC_BUILDER_ALLOW_REPEAT_TABLE_ADD
if (B->vs[id] != 0) {
return B->ds + B->vs[id] - field_size;
}
#else
if (B->vs[id] != 0) {
check(0, "table field already set");
return 0;
}
#endif
FLATCC_BUILDER_UPDATE_VT_HASH(B->vt_hash, (uint32_t)id, (uint32_t)field_size);
return push_ds_offset_field(B, (voffset_t)id);
}
uint16_t flatcc_builder_push_buffer_alignment(flatcc_builder_t *B)
{
uint16_t old_min_align = B->min_align;
B->min_align = field_size;
return old_min_align;
}
void flatcc_builder_pop_buffer_alignment(flatcc_builder_t *B, uint16_t pushed_align)
{
set_min_align(B, pushed_align);
}
uint16_t flatcc_builder_get_buffer_alignment(flatcc_builder_t *B)
{
return B->min_align;
}
void flatcc_builder_set_vtable_clustering(flatcc_builder_t *B, int enable)
{
/* Inverted because we zero all memory in B on init. */
B->disable_vt_clustering = !enable;
}
void flatcc_builder_set_block_align(flatcc_builder_t *B, uint16_t align)
{
B->block_align = align;
}
int flatcc_builder_get_level(flatcc_builder_t *B)
{
return B->level;
}
void flatcc_builder_set_max_level(flatcc_builder_t *B, int max_level)
{
B->max_level = max_level;
if (B->limit_level < B->max_level) {
B->limit_level = B->max_level;
}
}
size_t flatcc_builder_get_buffer_size(flatcc_builder_t *B)
{
return (size_t)(B->emit_end - B->emit_start);
}
flatcc_builder_ref_t flatcc_builder_get_buffer_start(flatcc_builder_t *B)
{
return B->emit_start;
}
flatcc_builder_ref_t flatcc_builder_get_buffer_end(flatcc_builder_t *B)
{
return B->emit_end;
}
void flatcc_builder_set_vtable_cache_limit(flatcc_builder_t *B, size_t size)
{
B->vb_flush_limit = size;
}
void flatcc_builder_set_identifier(flatcc_builder_t *B, const char identifier[identifier_size])
{
set_identifier(identifier);
}
enum flatcc_builder_type flatcc_builder_get_type(flatcc_builder_t *B)
{
return B->frame ? frame(type) : flatcc_builder_empty;
}
enum flatcc_builder_type flatcc_builder_get_type_at(flatcc_builder_t *B, int level)
{
if (level < 1 || level > B->level) {
return flatcc_builder_empty;
}
return B->frame[level - B->level].type;
}
void *flatcc_builder_get_direct_buffer(flatcc_builder_t *B, size_t *size_out)
{
if (B->is_default_emitter) {
return flatcc_emitter_get_direct_buffer(&B->default_emit_context, size_out);
} else {
if (size_out) {
*size_out = 0;
}
}
return 0;
}
void *flatcc_builder_copy_buffer(flatcc_builder_t *B, void *buffer, size_t size)
{
/* User is allowed to call tentatively to see if there is support. */
if (!B->is_default_emitter) {
return 0;
}
buffer = flatcc_emitter_copy_buffer(&B->default_emit_context, buffer, size);
check(buffer, "default emitter declined to copy buffer");
return buffer;
}
void *flatcc_builder_finalize_buffer(flatcc_builder_t *B, size_t *size_out)
{
void * buffer;
size_t size;
size = flatcc_builder_get_buffer_size(B);
if (size_out) {
*size_out = size;
}
buffer = FLATCC_BUILDER_ALLOC(size);
if (!buffer) {
check(0, "failed to allocated memory for finalized buffer");
goto done;
}
if (!flatcc_builder_copy_buffer(B, buffer, size)) {
check(0, "default emitter declined to copy buffer");
FLATCC_BUILDER_FREE(buffer);
buffer = 0;
}
done:
if (!buffer && size_out) {
*size_out = 0;
}
return buffer;
}
void *flatcc_builder_finalize_aligned_buffer(flatcc_builder_t *B, size_t *size_out)
{
void * buffer;
size_t align;
size_t size;
size = flatcc_builder_get_buffer_size(B);
if (size_out) {
*size_out = size;
}
align = flatcc_builder_get_buffer_alignment(B);
size = (size + align - 1) & ~(align - 1);
buffer = FLATCC_BUILDER_ALIGNED_ALLOC(align, size);
if (!buffer) {
goto done;
}
if (!flatcc_builder_copy_buffer(B, buffer, size)) {
FLATCC_BUILDER_ALIGNED_FREE(buffer);
buffer = 0;
goto done;
}
done:
if (!buffer && size_out) {
*size_out = 0;
}
return buffer;
}
void *flatcc_builder_aligned_alloc(size_t alignment, size_t size)
{
return FLATCC_BUILDER_ALIGNED_ALLOC(alignment, size);
}
void flatcc_builder_aligned_free(void *p)
{
FLATCC_BUILDER_ALIGNED_FREE(p);
}
void *flatcc_builder_alloc(size_t size)
{
return FLATCC_BUILDER_ALLOC(size);
}
void flatcc_builder_free(void *p)
{
FLATCC_BUILDER_FREE(p);
}
void *flatcc_builder_get_emit_context(flatcc_builder_t *B)
{
return B->emit_context;
}