Files
ipnetwork/src/ipv4.rs

505 lines
14 KiB
Rust

use std::fmt;
use std::net::Ipv4Addr;
use std::str::FromStr;
#[cfg(feature = "serde")]
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use common::{cidr_parts, parse_addr, parse_prefix, IpNetworkError};
const IPV4_BITS: u8 = 32;
/// Represents a network range where the IP addresses are of v4
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Ipv4Network {
addr: Ipv4Addr,
prefix: u8,
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Ipv4Network {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let s = <&str>::deserialize(deserializer)?;
Ipv4Network::from_str(s).map_err(de::Error::custom)
}
}
#[cfg(feature = "serde")]
impl Serialize for Ipv4Network {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&self.to_string())
}
}
impl Ipv4Network {
/// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size.
/// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`.
pub fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
if prefix > IPV4_BITS {
Err(IpNetworkError::InvalidPrefix)
} else {
Ok(Ipv4Network {
addr: addr,
prefix: prefix,
})
}
}
/// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next
/// `Ipv4Addr` in the given network. `None` will be returned when there are no more
/// addresses.
pub fn iter(&self) -> Ipv4NetworkIterator {
let start = u64::from(u32::from(self.network()));
let end = start + self.size();
Ipv4NetworkIterator {
next: start,
end: end,
}
}
pub fn ip(&self) -> Ipv4Addr {
self.addr
}
pub fn prefix(&self) -> u8 {
self.prefix
}
/// Returns the mask for this `Ipv4Network`.
/// That means the `prefix` most significant bits will be 1 and the rest 0
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "127.0.0.0".parse().unwrap();
/// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 255, 255));
/// let net: Ipv4Network = "127.0.0.0/16".parse().unwrap();
/// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 0, 0));
/// ```
pub fn mask(&self) -> Ipv4Addr {
let prefix = self.prefix;
let mask = !(0xffff_ffff as u64 >> prefix) as u32;
Ipv4Addr::from(mask)
}
/// Returns the address of the network denoted by this `Ipv4Network`.
/// This means the lowest possible IPv4 address inside of the network.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "10.1.9.32/16".parse().unwrap();
/// assert_eq!(net.network(), Ipv4Addr::new(10, 1, 0, 0));
/// ```
pub fn network(&self) -> Ipv4Addr {
let mask = u32::from(self.mask());
let ip = u32::from(self.addr) & mask;
Ipv4Addr::from(ip)
}
/// Returns the broadcasting address of this `Ipv4Network`.
/// This means the highest possible IPv4 address inside of the network.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "10.9.0.32/16".parse().unwrap();
/// assert_eq!(net.broadcast(), Ipv4Addr::new(10, 9, 255, 255));
/// ```
pub fn broadcast(&self) -> Ipv4Addr {
let mask = u32::from(self.mask());
let broadcast = u32::from(self.addr) | !mask;
Ipv4Addr::from(broadcast)
}
/// Checks if a given `Ipv4Addr` is in this `Ipv4Network`
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "127.0.0.0/24".parse().unwrap();
/// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70)));
/// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70)));
/// ```
pub fn contains(&self, ip: Ipv4Addr) -> bool {
let net = u32::from(self.network());
let mask = u32::from(self.mask());
(u32::from(ip) & mask) == net
}
/// Returns number of possible host addresses in this `Ipv4Network`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "10.1.0.0/16".parse().unwrap();
/// assert_eq!(net.size(), 65536);
///
/// let tinynet: Ipv4Network = "0.0.0.0/32".parse().unwrap();
/// assert_eq!(tinynet.size(), 1);
/// ```
pub fn size(&self) -> u64 {
let host_bits = u32::from(IPV4_BITS - self.prefix);
(2 as u64).pow(host_bits)
}
/// Returns the `n`:th address within this network.
/// The adresses are indexed from 0 and `n` must be smaller than the size of the network.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net: Ipv4Network = "192.168.0.0/24".parse().unwrap();
/// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0));
/// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15));
/// assert!(net.nth(256).is_none());
///
/// let net2: Ipv4Network = "10.0.0.0/16".parse().unwrap();
/// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0));
/// ```
pub fn nth(&self, n: u32) -> Option<Ipv4Addr> {
if u64::from(n) < self.size() {
let net = u32::from(self.network());
Some(Ipv4Addr::from(net + n))
} else {
None
}
}
}
impl fmt::Display for Ipv4Network {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.ip(), self.prefix())
}
}
/// Creates an `Ipv4Network` from parsing a string in CIDR notation.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap();
/// let from_cidr: Ipv4Network = "10.1.9.32/16".parse().unwrap();
/// assert_eq!(new.ip(), from_cidr.ip());
/// assert_eq!(new.prefix(), from_cidr.prefix());
/// ```
impl FromStr for Ipv4Network {
type Err = IpNetworkError;
fn from_str(s: &str) -> Result<Ipv4Network, IpNetworkError> {
let (addr_str, prefix_str) = cidr_parts(s)?;
let addr = parse_addr(addr_str)?;
let prefix = match prefix_str {
Some(v) => parse_prefix(v, IPV4_BITS)?,
None => IPV4_BITS,
};
Ipv4Network::new(addr, prefix)
}
}
impl From<Ipv4Addr> for Ipv4Network {
fn from(a: Ipv4Addr) -> Ipv4Network {
Ipv4Network {
addr: a,
prefix: 32,
}
}
}
pub struct Ipv4NetworkIterator {
next: u64,
end: u64,
}
impl Iterator for Ipv4NetworkIterator {
type Item = Ipv4Addr;
fn next(&mut self) -> Option<Ipv4Addr> {
if self.next < self.end {
let next = Ipv4Addr::from(self.next as u32);
self.next += 1;
Some(next)
} else {
None
}
}
}
/// Converts a `Ipv4Addr` network mask into a prefix.
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result<u8, IpNetworkError> {
let mask = u32::from(mask);
let prefix = (!mask).leading_zeros() as u8;
if ((mask as u64) << prefix) & 0xffff_ffff != 0 {
Err(IpNetworkError::InvalidPrefix)
} else {
Ok(prefix)
}
}
#[cfg(test)]
mod test {
use super::*;
use std::collections::HashMap;
use std::mem;
use std::net::Ipv4Addr;
#[test]
fn create_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn create_v4_invalid_prefix() {
let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
assert!(net.is_err());
}
#[test]
fn parse_v4_0bit() {
let cidr: Ipv4Network = "0/0".parse().unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(0, 0, 0, 0));
assert_eq!(cidr.prefix(), 0);
}
#[test]
fn parse_v4_24bit() {
let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn parse_v4_32bit() {
let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
assert_eq!(cidr.prefix(), 32);
}
#[test]
fn parse_v4_noprefix() {
let cidr: Ipv4Network = "127.0.0.0".parse().unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
assert_eq!(cidr.prefix(), 32);
}
#[test]
fn parse_v4_fail_addr() {
let cidr: Option<Ipv4Network> = "10.a.b/8".parse().ok();
assert_eq!(None, cidr);
}
#[test]
fn parse_v4_fail_addr2() {
let cidr: Option<Ipv4Network> = "10.1.1.1.0/8".parse().ok();
assert_eq!(None, cidr);
}
#[test]
fn parse_v4_fail_addr3() {
let cidr: Option<Ipv4Network> = "256/8".parse().ok();
assert_eq!(None, cidr);
}
#[test]
fn parse_v4_non_zero_host_bits() {
let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn parse_v4_fail_prefix() {
let cidr: Option<Ipv4Network> = "0/39".parse().ok();
assert_eq!(None, cidr);
}
#[test]
fn parse_v4_fail_two_slashes() {
let cidr: Option<Ipv4Network> = "10.1.1.1/24/".parse().ok();
assert_eq!(None, cidr);
}
#[test]
fn size_v4_24bit() {
let net: Ipv4Network = "0/24".parse().unwrap();
assert_eq!(net.size(), 256);
}
#[test]
fn size_v4_1bit() {
let net: Ipv4Network = "0/31".parse().unwrap();
assert_eq!(net.size(), 2);
}
#[test]
fn size_v4_max() {
let net: Ipv4Network = "0/0".parse().unwrap();
assert_eq!(net.size(), 4_294_967_296);
}
#[test]
fn size_v4_min() {
let net: Ipv4Network = "0/32".parse().unwrap();
assert_eq!(net.size(), 1);
}
#[test]
fn nth_v4() {
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
assert!(net.nth(256).is_none());
}
#[test]
fn nth_v4_fail() {
let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
assert!(net.nth(1).is_none());
}
#[test]
fn hash_eq_compatibility_v4() {
let mut map = HashMap::new();
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
map.insert(net, 137);
assert_eq!(137, map[&net]);
}
#[test]
fn copy_compatibility_v4() {
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
mem::drop(net);
assert_eq!(16, net.prefix());
}
#[test]
fn mask_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
let mask = cidr.mask();
assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248));
}
#[test]
fn network_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
let net = cidr.network();
assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0));
}
#[test]
fn broadcast_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
let bcast = cidr.broadcast();
assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255));
}
#[test]
fn contains_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
let ip = Ipv4Addr::new(74, 125, 227, 4);
assert!(cidr.contains(ip));
}
#[test]
fn not_contains_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
let ip = Ipv4Addr::new(10, 1, 0, 1);
assert!(!cidr.contains(ip));
}
#[test]
fn iterator_v4() {
let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap();
let mut iter = cidr.iter();
assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
assert_eq!(None, iter.next());
}
#[test]
fn iterator_v4_tiny() {
let cidr: Ipv4Network = "10/32".parse().unwrap();
let mut iter = cidr.iter();
assert_eq!(Ipv4Addr::new(10, 0, 0, 0), iter.next().unwrap());
assert_eq!(None, iter.next());
}
// Tests the entire IPv4 space to see if the iterator will stop at the correct place
// and not overflow or wrap around. Ignored since it takes a long time to run.
#[test]
#[ignore]
fn iterator_v4_huge() {
let cidr: Ipv4Network = "0/0".parse().unwrap();
let mut iter = cidr.iter();
for i in 0..(u32::max_value() as u64 + 1) {
assert_eq!(i as u32, u32::from(iter.next().unwrap()));
}
assert_eq!(None, iter.next());
}
#[test]
fn v4_mask_to_prefix() {
let mask = Ipv4Addr::new(255, 255, 255, 128);
let prefix = ipv4_mask_to_prefix(mask).unwrap();
assert_eq!(prefix, 25);
}
#[test]
fn invalid_v4_mask_to_prefix() {
let mask = Ipv4Addr::new(255, 0, 255, 0);
let prefix = ipv4_mask_to_prefix(mask);
assert!(prefix.is_err());
}
#[test]
fn ipv4network_from_ipv4addr() {
let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1));
let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap();
assert_eq!(net, expected);
}
#[test]
fn test_send() {
fn assert_send<T: Send>() {}
assert_send::<Ipv4Network>();
}
#[test]
fn test_sync() {
fn assert_sync<T: Sync>() {}
assert_sync::<Ipv4Network>();
}
}