Removed MPSMatrix entirely (buggy).

This commit is contained in:
Nicolas Patry
2023-12-13 16:21:48 +01:00
parent a9d0657432
commit 0404a3eb5b
3 changed files with 319 additions and 202 deletions

View File

@ -4,9 +4,7 @@ use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
use candle_metal_kernels;
use candle_metal_kernels::Kernels;
use half::f16;
use metal;
use metal::mps::matrix::{Matrix, MatrixDescriptor, MatrixMultiplication};
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
use std::collections::HashMap;
use std::path::Path;
@ -115,7 +113,7 @@ impl MetalDevice {
pub fn wait_until_completed(&self) {
let command_buffers = self.command_buffers.try_write().unwrap();
let index = self.command_buffer_index.try_write().unwrap();
let n = command_buffers.len();
// let n = command_buffers.len();
// for i in 0..*index {
// let command_buffer = &command_buffers[i];
// println!("Command {i} / {n}: {:?}", command_buffer.status());
@ -216,39 +214,6 @@ impl MetalDevice {
real
}
pub fn new_matrix(
&self,
(b, m, n): (NSUInteger, NSUInteger, NSUInteger),
size: NSUInteger,
type_id: u32,
dtype: DType,
) -> Result<(Matrix, Arc<Buffer>)> {
let elem_count = (b * m * n) as usize;
let buffer = self.new_buffer(elem_count, dtype, "matrix");
let command_buffer = self.command_buffer();
command_buffer.set_label("zeros_matmul");
let blit = command_buffer.new_blit_command_encoder();
blit.fill_buffer(
&buffer,
metal::NSRange {
location: 0,
length: buffer.length(),
},
0,
);
blit.end_encoding();
command_buffer.commit();
buffer.did_modify_range(metal::NSRange::new(0, buffer.length()));
let result_descriptor =
MatrixDescriptor::init_multiple(m, n, b, n * size, m * n * size, type_id);
let result_matrix = Matrix::init_with_buffer_descriptor(&buffer, 0, &result_descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
Ok((result_matrix, buffer))
}
pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
let capture = metal::CaptureManager::shared();
let descriptor = metal::CaptureDescriptor::new();
@ -266,22 +231,6 @@ impl MetalDevice {
#[derive(Debug, Clone)]
pub struct MetalStorage {
buffer: Arc<metal::Buffer>,
matrices: Arc<
RwLock<
HashMap<
(
NSUInteger,
NSUInteger,
NSUInteger,
bool,
NSUInteger,
NSUInteger,
u32,
),
Matrix,
>,
>,
>,
device: MetalDevice,
dtype: DType,
}
@ -976,7 +925,6 @@ impl BackendStorage for MetalStorage {
) -> Result<Self> {
crate::bail!("index_add metal")
}
fn matmul(
&self,
rhs: &Self,
@ -985,104 +933,37 @@ impl BackendStorage for MetalStorage {
rhs_l: &Layout,
) -> Result<Self> {
// Create descriptors
let (type_id, size) = match self.dtype {
DType::F32 => (
metal::mps::MPS_FLOATBIT_ENCODING | 32,
core::mem::size_of::<f32>() as NSUInteger,
),
DType::F16 => (
metal::mps::MPS_FLOATBIT_ENCODING | 16,
core::mem::size_of::<f16>() as NSUInteger,
),
dtype => todo!("Dtype for matmul {dtype:?} is not supported"),
};
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
// The a tensor has dims batching, k, n (rhs)
let transpose_left = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?
let buffer = self.device.new_buffer(b * m * n, self.dtype, "matmul");
let name = match self.dtype {
DType::F32 => "sgemm",
DType::F16 => "hgemm",
dtype => {
return Err(MetalError::Message(format!("matmul doesn't support {dtype:?}")).into())
}
};
let transpose_right = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
Err(MetalError::MatMulNonContiguous {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
mnk: (m, n, k),
})?
};
let b = b as NSUInteger;
let m = m as NSUInteger;
let n = n as NSUInteger;
let k = k as NSUInteger;
let left_matrix = self.matrix(
(b, m, k),
transpose_left,
size,
lhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let right_matrix = rhs.matrix(
(b, k, n),
transpose_right,
size,
rhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let (result_matrix, out_buffer) =
self.device
.new_matrix((b, m, n), size, type_id, self.dtype)?;
let command_buffer = self.device.command_buffer();
command_buffer.set_label("matmul");
let alpha = 1.0f64;
// let beta = f64::MIN;
let beta = 1.0;
// Create kernel
let matrix_multiplication = MatrixMultiplication::init(
&self.device,
transpose_left,
transpose_right,
m,
n,
k,
alpha,
beta,
)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
matrix_multiplication.set_batch_size(b);
matrix_multiplication.set_batch_start(0);
// Encode kernel to command buffer
matrix_multiplication.encode_to_command_buffer(
candle_metal_kernels::call_gemm(
&self.device.device,
&command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
&self.device.kernels,
name,
(b, m, n, k),
&lhs_l.stride(),
lhs_l.start_offset(),
&self.buffer,
&rhs_l.stride(),
rhs_l.start_offset(),
&rhs.buffer,
&buffer,
)
.map_err(MetalError::from)?;
// Create kernel
command_buffer.commit();
out_buffer.did_modify_range(metal::NSRange::new(0, out_buffer.length()));
// println!("========= MATMUL {:?}", Arc::strong_count(&out_buffer));
Ok(Self::new(out_buffer, self.device.clone(), self.dtype()))
Ok(Self::new(buffer, self.device.clone(), self.dtype()))
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
@ -1133,46 +1014,16 @@ impl BackendStorage for MetalStorage {
impl MetalStorage {
pub fn new(buffer: Arc<Buffer>, device: MetalDevice, dtype: DType) -> Self {
let matrices = Arc::new(RwLock::new(HashMap::new()));
Self {
buffer,
device,
dtype,
matrices,
}
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
fn matrix(
&self,
(b, m, n): (NSUInteger, NSUInteger, NSUInteger),
transpose: bool,
size: NSUInteger,
offset: NSUInteger,
type_id: u32,
) -> Result<Matrix> {
let key = (b, m, n, transpose, size, offset, type_id);
// let mut matrices = self.matrices.try_write().unwrap();
// if let Some(matrix) = matrices.get(&key) {
// Ok(matrix.clone())
// } else {
let descriptor = if transpose {
MatrixDescriptor::init_multiple(n, m, b, m * size, m * n * size, type_id)
} else {
MatrixDescriptor::init_multiple(m, n, b, n * size, m * n * size, type_id)
};
let matrix = Matrix::init_with_buffer_descriptor(&self.buffer, offset, &descriptor)
.ok_or_else(|| {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
// matrices.insert(key, matrix.clone());
Ok(matrix)
// }
}
}
impl BackendDevice for MetalDevice {

View File

@ -1,6 +1,6 @@
use metal::{
Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, Library, MTLSize,
Device, Function, FunctionConstantValues, Library, MTLDataType, MTLSize, NSUInteger,
};
use std::collections::HashMap;
use std::ffi::c_void;
@ -13,6 +13,7 @@ const BINARY: &str = include_str!("binary.metal");
const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const REDUCE: &str = include_str!("reduce.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
fn linear_split(pipeline: &ComputePipelineState, length: usize) -> (MTLSize, MTLSize) {
let size = length as u64;
@ -105,6 +106,7 @@ pub enum Source {
Ternary,
Cast,
Reduce,
Mfa,
}
macro_rules! ops{
@ -179,9 +181,8 @@ impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
}
}
type KernelMap<T> = HashMap<&'static str, T>;
type Libraries = HashMap<Source, Library>;
type Pipelines = KernelMap<ComputePipelineState>;
type Pipelines = HashMap<(&'static str, Option<ConstantValues>), ComputePipelineState>;
#[derive(Debug, Default)]
pub struct Kernels {
@ -208,9 +209,9 @@ impl Kernels {
Source::Indexing => INDEXING,
Source::Cast => CAST,
Source::Reduce => REDUCE,
Source::Mfa => panic!("Invalid lib"),
}
}
pub fn load_library(
&self,
device: &Device,
@ -220,10 +221,20 @@ impl Kernels {
if let Some(lib) = libraries.get(&source) {
Ok(lib.clone())
} else {
let source_content = self.get_library_source(source);
let lib = device
.new_library_with_source(source_content, &CompileOptions::new())
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?;
let lib = match source {
Source::Mfa => {
let source_data = MFA;
device
.new_library_with_data(source_data)
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
source => {
let source_content = self.get_library_source(source);
device
.new_library_with_source(source_content, &CompileOptions::new())
.map_err(|e| MetalKernelError::LoadLibraryError(e.to_string()))?
}
};
libraries.insert(source, lib.clone());
Ok(lib)
}
@ -234,19 +245,41 @@ impl Kernels {
device: &Device,
source: Source,
name: &'static str,
constants: Option<FunctionConstantValues>,
) -> Result<Function, MetalKernelError> {
let func = self
.load_library(device, source)?
.get_function(name, None)
.get_function(name, constants)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func)
// let mut funcs = self.funcs.write()?;
// if let Some(func) = funcs.get(name) {
// Ok(func.clone())
// } else {
// funcs.insert(name, func.clone());
// Ok(func)
// }
}
fn load_pipeline_with_constants(
&self,
device: &Device,
source: Source,
name: &'static str,
constants: Option<ConstantValues>,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
let key = (name, constants);
if let Some(pipeline) = pipelines.get(&key) {
Ok(pipeline.clone())
} else {
let (name, constants) = key;
let func = self.load_function(
device,
source,
name,
constants.as_ref().map(|c| c.function_constant_values()),
)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert((name, constants), pipeline.clone());
Ok(pipeline)
}
}
pub fn load_pipeline(
@ -255,18 +288,7 @@ impl Kernels {
source: Source,
name: &'static str,
) -> Result<ComputePipelineState, MetalKernelError> {
let mut pipelines = self.pipelines.write()?;
if let Some(pipeline) = pipelines.get(name) {
Ok(pipeline.clone())
} else {
let func = self.load_function(device, source, name)?;
let pipeline = device
.new_compute_pipeline_state_with_function(&func)
.map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
pipelines.insert(name, pipeline.clone());
Ok(pipeline)
}
self.load_pipeline_with_constants(device, source, name, None)
}
}
@ -830,5 +852,249 @@ pub fn call_index_select(
Ok(())
}
#[derive(Debug, PartialEq)]
pub enum Value {
USize(usize),
Bool(bool),
F32(f32),
U16(u16),
}
impl std::hash::Hash for Value {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
Value::F32(v) => v.to_bits().hash(state),
Value::USize(v) => v.hash(state),
Value::U16(v) => v.hash(state),
Value::Bool(v) => v.hash(state),
}
}
}
impl Value {
fn data_type(&self) -> MTLDataType {
match self {
Value::USize(_) => MTLDataType::UInt,
Value::F32(_) => MTLDataType::Float,
Value::U16(_) => MTLDataType::UShort,
Value::Bool(_) => MTLDataType::Bool,
}
}
}
/// Not true, good enough for our purposes.
impl Eq for Value {}
#[derive(Debug, Eq, PartialEq, Hash)]
struct ConstantValues(Vec<(usize, Value)>);
impl ConstantValues {
pub fn new(values: Vec<(usize, Value)>) -> Self {
Self(values)
}
fn function_constant_values(&self) -> FunctionConstantValues {
let f = FunctionConstantValues::new();
for (index, value) in &self.0 {
let ty = value.data_type();
match value {
Value::USize(v) => {
f.set_constant_value_at_index(
v as *const usize as *const c_void,
ty,
*index as u64,
);
}
Value::F32(v) => {
f.set_constant_value_at_index(
v as *const f32 as *const c_void,
ty,
*index as u64,
);
}
Value::U16(v) => {
f.set_constant_value_at_index(
v as *const u16 as *const c_void,
ty,
*index as u64,
);
}
Value::Bool(v) => {
f.set_constant_value_at_index(
v as *const bool as *const c_void,
ty,
*index as u64,
);
}
}
}
f
}
}
#[allow(clippy::too_many_arguments)]
pub fn call_gemm(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
(b, m, n, k): (usize, usize, usize, usize),
lhs_stride: &[usize],
lhs_offset: usize,
lhs_buffer: &Buffer,
rhs_stride: &[usize],
rhs_offset: usize,
rhs_buffer: &Buffer,
output: &Buffer,
) -> Result<(), MetalKernelError> {
assert!(rhs_stride.len() >= 2);
assert!(lhs_stride.len() >= 2);
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let a_trans = if lhs_m1 == 1 && lhs_m2 == k {
false
} else if lhs_m1 == m && lhs_m2 == 1 {
true
} else {
todo!();
// Err(MetalError::MatMulNonContiguous {
// lhs_stride: lhs_stride.to_vec(),
// rhs_stride: rhs_stride.to_vec(),
// mnk: (m, n, k),
// })?
};
let b_trans = if rhs_m1 == 1 && rhs_m2 == n {
false
} else if rhs_m1 == k && rhs_m2 == 1 {
true
} else {
todo!();
// Err(MetalError::MatMulNonContiguous {
// lhs_stride: lhs_stride.to_vec(),
// rhs_stride: rhs_stride.to_vec(),
// mnk: (m, n, k),
// })?
};
let d_trans = false;
let alpha = 1.0f32;
let beta = 0.0f32;
let batched = b > 1;
let fused_activation = false;
let fused_bias = false;
let m_simd = 16;
let n_simd = 16;
let k_simd = 16;
let m_splits = 2;
let n_splits = 2;
let constants = Some(ConstantValues::new(vec![
(0, Value::USize(m)),
(1, Value::USize(n)),
(2, Value::USize(k)),
(10, Value::Bool(a_trans)),
(11, Value::Bool(b_trans)),
(13, Value::Bool(d_trans)),
(20, Value::F32(alpha)),
(21, Value::F32(beta)),
(100, Value::Bool(batched)),
(101, Value::Bool(fused_activation)),
// Garbage
(102, Value::Bool(false)),
(103, Value::Bool(false)),
(113, Value::Bool(false)),
(50_000, Value::Bool(false)),
// End garbage
(200, Value::U16(m_simd)),
(201, Value::U16(n_simd)),
(202, Value::U16(k_simd)),
(210, Value::U16(m_splits)),
(211, Value::U16(n_splits)),
(50_001, Value::Bool(fused_bias)),
]));
// println!("Constants {constants:?}");
let pipeline = kernels.load_pipeline_with_constants(device, Source::Mfa, name, constants)?;
let m_group = m_simd * m_splits;
let n_group = n_simd * n_splits;
let a_block_length = m_group * k_simd;
let b_block_length = k_simd * n_group;
let mut block_elements = a_block_length + b_block_length;
if (m % 8 != 0) && (n % 8 != 0) {
let c_block_length = m_group * n_group;
block_elements = std::cmp::max(c_block_length, block_elements)
}
if fused_bias {
if d_trans {
block_elements = std::cmp::max(block_elements, m_group);
} else {
block_elements = std::cmp::max(block_elements, n_group);
}
}
// TODO adapt for f16
let bytes = match name {
"sgemm" => 4,
"hgemm" => 2,
other => {
return Err(MetalKernelError::LoadLibraryError(format!(
"{other} is not a valid kernel for gemm"
)));
}
};
let block_bytes = block_elements * bytes;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
// println!("Threadgroup {block_bytes}");
encoder.set_threadgroup_memory_length(0, block_bytes.into());
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger);
encoder.set_buffer(2, Some(output), 0);
// TODO Tensor D
let grid_z = b;
if batched {
let byte_stride_a: usize = lhs_stride[lhs_stride.len() - 3] * bytes as usize;
let byte_stride_b: usize = rhs_stride[rhs_stride.len() - 3] * bytes as usize;
let byte_stride_c = m * n * bytes as usize;
// TODO byte_stride_d
let byte_stride_d = 0;
let mut buffer: Vec<u64> = Vec::with_capacity(b * 4);
for i in 0..b {
buffer.push((i * byte_stride_a) as u64);
buffer.push((i * byte_stride_b) as u64);
buffer.push((i * byte_stride_c) as u64);
buffer.push((i * byte_stride_d) as u64);
}
encoder.set_bytes(
10,
(buffer.len() * core::mem::size_of::<u64>()) as NSUInteger,
buffer.as_ptr() as *const NSUInteger as *const c_void,
);
}
let grid_size = MTLSize {
width: divide(n, n_group.into()),
height: divide(m, m_group.into()),
depth: grid_z as NSUInteger,
};
let group_size = MTLSize {
width: 32 * (m_splits as u64) * (n_splits as u64),
height: 1,
depth: 1,
};
// println!("grid size {grid_size:?} group size {group_size:?}");
encoder.dispatch_thread_groups(grid_size, group_size);
encoder.end_encoding();
Ok(())
}
fn divide(m: usize, b: usize) -> NSUInteger {
((m + b - 1) / b) as NSUInteger
}
#[cfg(test)]
mod tests;