Merge pull request #2 from LaurentMazare/matmul

Adding matmul.
This commit is contained in:
Nicolas Patry
2023-06-22 13:18:57 +02:00
committed by GitHub
10 changed files with 363 additions and 8 deletions

15
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,15 @@
repos:
- repo: https://github.com/Narsil/pre-commit-rust
rev: 2eed6366172ef2a5186e8785ec0e67243d7d73d0
hooks:
- id: fmt
name: "Rust (fmt)"
- id: clippy
name: "Rust (clippy)"
args:
[
"--tests",
"--examples",
"--",
"-Dwarnings",
]

View File

@ -20,12 +20,13 @@ safetensors = "0.3.1"
thiserror = "1"
cudarc = { version = "0.9.9", optional = true }
candle-kernels = { path = "kernels", optional = true }
gemm = "0.15.4"
[dev-dependencies]
anyhow = "1"
clap = { version = "4.2.4", features = ["derive"] }
rand = "0.8.5"
tokenizers = "0.13.3"
tokenizers = { version = "0.13.3", default-features=false, features=["onig"] }
[features]
default = []

View File

@ -1,5 +1,6 @@
use crate::storage::{BinaryOp, UnaryOp};
use crate::{DType, Error, Result, Shape, StridedIndex};
use gemm::{gemm, Parallelism};
// TODO: Think about whether we would be better off with a dtype and
// a buffer as an owned slice of bytes.
@ -17,6 +18,14 @@ impl CpuStorage {
}
}
pub fn as_slice<D: crate::WithDType>(&self) -> Result<&[D]> {
D::cpu_storage_as_slice(self)
}
pub fn as_mut_slice<D: crate::WithDType>(&mut self) -> Result<&mut [D]> {
D::cpu_storage_as_mut_slice(self)
}
pub(crate) fn affine_impl(
&self,
shape: &Shape,
@ -97,6 +106,93 @@ impl CpuStorage {
}
}
pub(crate) fn matmul_impl(
&self,
rhs: &Self,
(b, m, n, k): (usize, usize, usize, usize),
lhs_stride: &[usize],
rhs_stride: &[usize],
) -> Result<Self> {
let a_skip: usize = m * k;
let b_skip: usize = n * k;
let c_skip: usize = m * n;
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
if lhs_stride.len() > 2 {
let lhs_batch_stride = &lhs_stride[..rank - 2];
let rhs_batch_stride = &rhs_stride[..rank - 2];
if lhs_batch_stride != [a_skip] || rhs_batch_stride != [b_skip] {
// Temporary error before we support abitrary striding.
return Err(Error::UnexpectedStriding);
}
}
let mut dst = vec![0.0; b * m * n];
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
for step in 0..b {
let lhs_p = &self.as_slice::<f32>()?[step * a_skip..];
let rhs_p = &rhs.as_slice::<f32>()?[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
// m: usize,
m,
// n: usize,
n,
// k: usize,
k,
// dst: *mut T,
dst_p.as_mut_ptr(),
// dst_cs: isize,
dst_cs as isize,
// dst_rs: isize,
dst_rs as isize,
// read_dst: bool,
false,
// lhs: *const T,
lhs_p.as_ptr(),
// lhs_cs: isize,
lhs_cs as isize,
// lhs_rs: isize,
lhs_rs as isize,
// rhs: *const T,
rhs_p.as_ptr(),
// rhs_cs: isize,
rhs_cs as isize,
// rhs_rs: isize,
rhs_rs as isize,
// alpha: T,
1.0,
// beta: T,
1.0,
// conj_dst: bool,
false,
// conj_lhs: bool,
false,
// conj_rhs: bool,
true,
// parallelism: Parallelism
Parallelism::None,
)
}
}
let c = Self::F32(dst);
Ok(c)
}
pub(crate) fn ones_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
@ -125,3 +221,45 @@ impl CpuStorage {
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{Device, Tensor};
#[test]
fn simple_matmul() -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[7.0f32, 10.0], &[15.0, 22.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), &Device::Cpu)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), &Device::Cpu)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), &Device::Cpu)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), &Device::Cpu)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), &Device::Cpu)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), &Device::Cpu)?;
let c = a.matmul(&b)?;
assert_eq!(
c.to_vec3::<f32>()?,
&[&[&[16., 19.], &[52., 64.]], &[&[214., 235.], &[304., 334.]]]
);
Ok(())
}
}

View File

@ -101,7 +101,7 @@ impl Device {
}
}
pub(crate) fn tensor<A: NdArray>(&self, array: A) -> Result<Storage> {
pub(crate) fn storage<A: NdArray>(&self, array: A) -> Result<Storage> {
match self {
Device::Cpu => Ok(Storage::Cpu(array.to_cpu_storage())),
Device::Cuda(device) => {

View File

@ -25,6 +25,7 @@ pub trait WithDType: Sized + Copy {
}
fn cpu_storage_as_slice(s: &CpuStorage) -> Result<&[Self]>;
fn cpu_storage_as_mut_slice(s: &mut CpuStorage) -> Result<&mut [Self]>;
}
macro_rules! with_dtype {
@ -45,6 +46,16 @@ macro_rules! with_dtype {
}),
}
}
fn cpu_storage_as_mut_slice(s: &mut CpuStorage) -> Result<&mut [Self]> {
match s {
CpuStorage::$dtype(data) => Ok(data),
_ => Err(Error::UnexpectedDType {
expected: DType::$dtype,
got: s.dtype(),
}),
}
}
}
};
}

View File

@ -12,6 +12,11 @@ pub enum Error {
#[error("the candle crate has not been built with cuda support")]
NotCompiledWithCudaSupport,
#[error(
"Shape mismatch, got buffer of size {buffer_size} which is compatible with shape {shape:?}"
)]
ShapeMismatch { buffer_size: usize, shape: Shape },
#[error("shape mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")]
ShapeMismatchBinaryOp {
lhs: Shape,
@ -40,6 +45,10 @@ pub enum Error {
shape: Shape,
},
// TODO this is temporary when we support arbitrary matmul
#[error("temporary error where matmul doesn't support arbitrary striding")]
UnexpectedStriding,
#[error(transparent)]
Cuda(#[from] crate::CudaError),
}

View File

@ -5,6 +5,7 @@ pub(crate) enum Op {
Mul(Tensor, Tensor),
Sub(Tensor, Tensor),
Div(Tensor, Tensor),
Matmul(Tensor, Tensor),
#[allow(dead_code)] // add is currently unused.
Affine {

View File

@ -241,4 +241,22 @@ impl Storage {
pub(crate) fn sqrt_impl(&self, shape: &Shape, stride: &[usize]) -> Result<Self> {
self.unary_impl::<Sqrt>(shape, stride)
}
pub(crate) fn matmul_impl(
&self,
rhs: &Self,
bmnk: (usize, usize, usize, usize),
lhs_stride: &[usize],
rhs_stride: &[usize],
) -> Result<Self> {
self.same_device(rhs, "matmul")?;
self.same_dtype(rhs, "matmul")?;
match (self, rhs) {
(Storage::Cpu(storage), Storage::Cpu(rhs_storage)) => {
let storage = storage.matmul_impl(rhs_storage, bmnk, lhs_stride, rhs_stride)?;
Ok(Self::Cpu(storage))
}
_ => todo!(),
}
}
}

View File

@ -147,11 +147,16 @@ impl Tensor {
pub fn new_impl<A: crate::device::NdArray>(
array: A,
shape: Shape,
device: &Device,
is_variable: bool,
) -> Result<Self> {
let shape = array.shape()?;
let storage = device.tensor(array)?;
let n: usize = shape.elem_count();
let buffer_size: usize = array.shape()?.elem_count();
if buffer_size != n {
return Err(Error::ShapeMismatch { buffer_size, shape });
}
let storage = device.storage(array)?;
let stride = shape.stride_contiguous();
let tensor_ = Tensor_ {
id: TensorId::new(),
@ -165,11 +170,29 @@ impl Tensor {
}
pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> {
Self::new_impl(array, device, false)
let shape = array.shape()?;
Self::new_impl(array, shape, device, false)
}
pub fn var<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> {
Self::new_impl(array, device, true)
let shape = array.shape()?;
Self::new_impl(array, shape, device, true)
}
pub fn from_slice<S: Into<Shape>, D: crate::WithDType>(
array: &[D],
shape: S,
device: &Device,
) -> Result<Self> {
Self::new_impl(array, shape.into(), device, false)
}
pub fn var_from_slice<S: Into<Shape>, D: crate::WithDType>(
array: &[D],
shape: S,
device: &Device,
) -> Result<Self> {
Self::new_impl(array, shape.into(), device, true)
}
pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> {
@ -234,10 +257,65 @@ impl Tensor {
Ok(Self(Arc::new(tensor_)))
}
pub fn matmul(&self, rhs: &Self) -> Result<Self> {
let a_dims = self.shape().dims();
let b_dims = rhs.shape().dims();
let dim = a_dims.len();
if dim < 2 || b_dims.len() != dim {
return Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
});
}
let m = a_dims[dim - 2];
let k = a_dims[dim - 1];
let k2 = b_dims[dim - 2];
let n = b_dims[dim - 1];
if k != k2 {
return Err(Error::ShapeMismatchBinaryOp {
lhs: self.shape().clone(),
rhs: rhs.shape().clone(),
op: "matmul",
});
}
let mut c_shape: Vec<_> = a_dims[..dim - 2].into();
c_shape.extend(&[m, n]);
let c_shape = Shape(c_shape);
let batching: usize = a_dims[..dim - 2].iter().product();
let storage = self.storage.matmul_impl(
&rhs.storage,
(batching, m, n, k),
self.stride(),
rhs.stride(),
)?;
let tensor_ = Tensor_ {
id: TensorId::new(),
storage,
shape: c_shape.clone(),
stride: c_shape.stride_contiguous(),
op: Some(Op::Matmul(self.clone(), rhs.clone())),
is_variable: false,
};
Ok(Self(Arc::new(tensor_)))
}
pub(crate) fn strided_index(&self) -> crate::StridedIndex {
crate::StridedIndex::new(self.dims(), self.stride())
}
pub fn as_slice<S: crate::WithDType>(&self) -> Result<&[S]> {
match &self.storage {
Storage::Cpu(cpu_storage) => S::cpu_storage_as_slice(cpu_storage),
Storage::Cuda { .. } => todo!(),
}
}
pub fn to_vec1<S: crate::WithDType>(&self) -> Result<Vec<S>> {
if self.rank() != 1 {
return Err(Error::UnexpectedNumberOfDims {
@ -279,6 +357,28 @@ impl Tensor {
}
}
pub fn to_vec3<S: crate::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> {
let (dim1, dim2, dim3) = self.shape().r3()?;
match &self.storage {
Storage::Cpu(cpu_storage) => {
let data = S::cpu_storage_as_slice(cpu_storage)?;
let mut top_rows = vec![];
let mut src_index = self.strided_index();
for _idx in 0..dim1 {
let mut rows = vec![];
for _jdx in 0..dim2 {
let row = (0..dim3).map(|_| data[src_index.next().unwrap()]).collect();
rows.push(row)
}
top_rows.push(rows);
}
assert!(src_index.next().is_none());
Ok(top_rows)
}
Storage::Cuda { .. } => todo!(),
}
}
pub fn dtype(&self) -> DType {
self.storage.dtype()
}
@ -311,6 +411,31 @@ impl Tensor {
self.id
}
pub fn t(&self) -> Result<Tensor> {
let mut stride = self.stride().to_vec();
let mut shape = self.shape().clone();
let n = stride.len();
if n < 2 {
return Err(Error::UnexpectedNumberOfDims {
expected: 2,
got: n,
shape: self.shape().clone(),
});
}
(shape.0[n - 2], shape.0[n - 1]) = (shape.0[n - 1], shape.0[n - 2]);
(stride[n - 2], stride[n - 1]) = (stride[n - 1], stride[n - 2]);
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
shape,
stride,
// TODO The op should have a backward
op: None,
is_variable: false,
};
Ok(Tensor(Arc::new(tensor_)))
}
pub fn is_contiguous(&self) -> bool {
self.shape.is_contiguous(&self.stride)
}
@ -340,7 +465,8 @@ impl Tensor {
Op::Add(lhs, rhs)
| Op::Mul(lhs, rhs)
| Op::Sub(lhs, rhs)
| Op::Div(lhs, rhs) => {
| Op::Div(lhs, rhs)
| Op::Matmul(lhs, rhs) => {
let (tg, nodes) = walk(lhs, nodes, already_seen);
track_grad |= tg;
let (tg, nodes) = walk(rhs, nodes, already_seen);
@ -420,6 +546,18 @@ impl Tensor {
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
}
Op::Matmul(lhs, rhs) => {
// Skipping checks, the op went ok, we can skip
// the matmul size checks for now.
let lhs_grad = grad.matmul(&rhs.t()?)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = lhs.t()?.matmul(&grad)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
}
Op::Affine { arg, mul, .. } => {
let arg_grad = grad.affine(*mul, 0.)?;
let sum_grad = grads.or_insert(arg)?;

View File

@ -1,5 +1,5 @@
use anyhow::{Context, Result};
use candle::{Device, Tensor};
use candle::{Device, Shape, Tensor};
#[test]
fn simple_grad() -> Result<()> {
@ -14,3 +14,27 @@ fn simple_grad() -> Result<()> {
assert_eq!(grad_x.to_vec1::<f32>()?, [11., 7., 13.]);
Ok(())
}
#[test]
fn matmul_grad() -> Result<()> {
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let x = Tensor::var_from_slice(&data, (2, 2, 3), &Device::Cpu)?;
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let y = Tensor::var_from_slice(&data, (2, 3, 2), &Device::Cpu)?;
let c = x.matmul(&y)?;
let grads = c.backward()?;
let grad_x = grads.get(&x).context("no grad for x")?;
let grad_y = grads.get(&y).context("no grad for y")?;
assert_eq!(grad_x.shape(), &Shape::from((2, 2, 3)));
assert_eq!(grad_y.shape(), &Shape::from((2, 3, 2)));
assert_eq!(
grad_x.as_slice::<f32>()?,
&[1., 5., 9., 1., 5., 9., 13., 17., 21., 13., 17., 21.]
);
assert_eq!(
grad_y.as_slice::<f32>()?,
&[3., 3., 5., 5., 7., 7., 15., 15., 17., 17., 19., 19.]
);
Ok(())
}