Mirror GGML's unit tests (#569)

* Add ggml unit tests

* simplify random matmul test for other test cases
This commit is contained in:
Lukas Kreussel
2023-08-23 16:25:17 +02:00
committed by GitHub
parent aba1e90797
commit 075b505480

View File

@ -1,8 +1,16 @@
use candle_core::{quantized, Device, Result, Tensor};
use quantized::{k_quants, GgmlType};
mod test_utils;
use rand::prelude::*;
use test_utils::to_vec2_round;
const GGML_TEST_SIZE: usize = 32 * 128;
const GGML_MAX_QUANTIZATION_TOTAL_ERROR: f32 = 0.002;
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075;
const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040;
const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02;
#[test]
fn quantized_matmul() -> Result<()> {
let cpu = &Device::Cpu;
@ -121,6 +129,10 @@ fn quantize_q4_0() -> Result<()> {
127.0, 127.0
]
);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ4_0>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
@ -166,6 +178,41 @@ fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) {
}
}
/// Creates a vector simillarly to the one used in GGML unit tests: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30
fn create_ggml_like_vector(offset: f32) -> Vec<f32> {
let mut vec = vec![0.0; GGML_TEST_SIZE];
for (i, item) in vec.iter_mut().enumerate() {
*item = 0.1 + 2.0 * (i as f32 + offset).cos();
}
vec
}
/// Calculates the root mean square error between two vectors
fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());
let mut sum = 0.0;
for i in 0..a.len() {
sum += (a[i] - b[i]).powi(2);
}
(sum).sqrt() / a.len() as f32
}
/// Mirrores the GGML quanitzation unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50
fn ggml_quantization_error_test<T: GgmlType>(max_error: f32) -> Result<()> {
let src = create_ggml_like_vector(0.0);
let mut dst = vec![0.0; GGML_TEST_SIZE];
let _quant = quantize_roundtrip::<T>(src.as_slice(), dst.as_mut_slice())?;
let error = calculate_rmse(src.as_slice(), dst.as_slice());
if error > max_error {
candle_core::bail!(
"Quantization error {} exceeds max error {}",
error,
max_error
);
}
Ok(())
}
fn quantize_roundtrip<T: GgmlType>(src: &[f32], dst: &mut [f32]) -> Result<Vec<T>> {
let mut quant = vec![T::zeros(); src.len() / T::BLCK_SIZE];
T::from_float(src, &mut quant)?;
@ -195,6 +242,9 @@ fn quantize_q2k() -> Result<()> {
let (src_big, mut dst_big) = get_test_vector(128.0, Some(1024));
let _quant_big = quantize_roundtrip::<BlockQ2K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ2K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?;
Ok(())
}
@ -220,6 +270,9 @@ fn quantize_q3k() -> Result<()> {
let (src_big, mut dst_big) = get_test_vector(128.0, Some(1024));
let _quant_big = quantize_roundtrip::<BlockQ3K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ3K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?;
Ok(())
}
@ -245,6 +298,9 @@ fn quantize_q4k() -> Result<()> {
let (src_big, mut dst_big) = get_test_vector(128.0, Some(1024));
let _quant_big = quantize_roundtrip::<BlockQ4K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ4K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
@ -270,6 +326,10 @@ fn quantize_q5k() -> Result<()> {
let (src_big, mut dst_big) = get_test_vector(128.0, Some(1024));
let _quant_big = quantize_roundtrip::<BlockQ5K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ5K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
@ -296,6 +356,9 @@ fn quantize_q6k() -> Result<()> {
let _quant_big = quantize_roundtrip::<BlockQ6K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ6K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
@ -322,18 +385,56 @@ fn quantize_q8k() -> Result<()> {
let _quant_big = quantize_roundtrip::<BlockQ8K>(src_big.as_slice(), dst_big.as_mut_slice())?;
compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6);
//mirrored GGML unit test
ggml_quantization_error_test::<BlockQ8K>(GGML_MAX_QUANTIZATION_TOTAL_ERROR)?;
Ok(())
}
#[test]
fn quantized_matmul_q6k() -> Result<()> {
use k_quants::BlockQ6K;
use rand::prelude::*;
/// Very simple dot product implementation
fn vec_dot_referenze(a: &[f32], b: &[f32]) -> f32 {
let mut sum = 0.0;
for (a_i, b_i) in a.iter().zip(b) {
sum += a_i * b_i;
}
sum
}
/// Mirrores the GGML matmul unit test: https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91
fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> {
let a = create_ggml_like_vector(0.0);
let b = create_ggml_like_vector(1.0);
let length = a.len();
let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE];
let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE];
T::from_float(&a, &mut a_quant)?;
T::VecDotType::from_float(&b, &mut b_quant)?;
let result = T::vec_dot(length, &a_quant, &b_quant)?;
let reference_result = vec_dot_referenze(&a, &b);
let error = (result - reference_result).abs() / length as f32;
if error > GGML_MAX_DOT_PRODUCT_ERROR {
candle_core::bail!(
"Dot product error {} exceeds max error {}",
error,
GGML_MAX_DOT_PRODUCT_ERROR
);
}
Ok(())
}
/// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result.
fn get_random_tensors(
m: usize,
k: usize,
n: usize,
device: &Device,
) -> Result<(Tensor, Tensor, Tensor)> {
let mut rng = StdRng::seed_from_u64(314159265358979);
let cpu = &Device::Cpu;
let (m, k, n) = (11, 512, 21);
let lhs = (0..m * k)
.map(|_| rng.gen::<f32>() - 0.5)
.collect::<Vec<_>>();
@ -341,16 +442,23 @@ fn quantized_matmul_q6k() -> Result<()> {
.map(|_| rng.gen::<f32>() - 0.5)
.collect::<Vec<_>>();
let lhs = Tensor::from_vec(lhs, (m, k), cpu)?;
let rhs = Tensor::from_vec(rhs, (n, k), cpu)?;
let lhs = Tensor::from_vec(lhs, (m, k), device)?;
let rhs = Tensor::from_vec(rhs, (n, k), device)?;
let mm = lhs.matmul(&rhs.t()?)?;
Ok((lhs, rhs, mm))
}
#[test]
fn quantized_matmul_q6k() -> Result<()> {
use k_quants::BlockQ6K;
let cpu = &Device::Cpu;
let (m, k, n) = (11, 512, 21);
let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?;
assert_eq!(mm.dims(), [m, n]);
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
let dst = [dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]
.iter()
.map(|x| (1000. * x).round() / 1000.)
.collect::<Vec<_>>();
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]);
let rhs = quantized::QTensor::quantize::<BlockQ6K>(&rhs)?;
@ -359,11 +467,11 @@ fn quantized_matmul_q6k() -> Result<()> {
assert_eq!(mm.dims(), [m, n]);
let dst = mm.flatten_all()?.to_vec1::<f32>()?;
let dst = [dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]
.iter()
.map(|x| (1000. * x).round() / 1000.)
.collect::<Vec<_>>();
let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]);
assert_eq!(dst, [1.324, 1.49, -0.164, 1.741]);
//mirrored GGML unit test
ggml_matmul_error_test::<BlockQ6K>()?;
Ok(())
}