Added tests for ArgMin

This commit is contained in:
b1rtek
2024-05-09 03:00:22 +02:00
parent 1caf62e4a6
commit 13b88547f7

View File

@ -10,6 +10,7 @@ use candle_onnx::onnx::attribute_proto::AttributeType;
use candle_onnx::onnx::tensor_proto::DataType;
use candle_onnx::onnx::{AttributeProto, GraphProto, ModelProto, NodeProto, ValueInfoProto};
use std::collections::HashMap;
use candle_onnx::eval::Value;
const INPUT_X: &str = "x";
const INPUT_Y: &str = "y";
@ -2416,3 +2417,174 @@ fn test_where() -> Result<()> {
Ok(())
}
// "ArgMin"
#[test]
fn test_argmin() -> Result<()> {
// tests from https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-7
// default_axes_keepdims
test(
&[
[2u32, 1u32],
[3u32, 10u32]
],
None,
Some(1),
None,
&[
[0u32, 0u32],
],
)?;
// keepdims
test(
&[
[2u32, 1u32],
[3u32, 10u32]
],
Some(1),
Some(1),
None,
&[
[1u32],
[0u32]
],
)?;
// // negative_axis_keepdims
test(
&[
[2u32, 1u32],
[3u32, 10u32]
],
Some(-1),
Some(1),
None,
&[
[1u32],
[0u32]
],
)?;
// no_keepdims
test(
&[
[2u32, 1u32],
[3u32, 10u32]
],
None,
Some(0),
None,
&[0u32, 0u32],
)?;
fn test(data: impl NdArray, axis: Option<i64>, keepdims: Option<i64>, select_last_index: Option<i64>, expected: impl NdArray) -> Result<()> {
let att_axis = AttributeProto {
name: "axis".to_string(),
ref_attr_name: "axis".to_string(),
i: axis.unwrap_or(0),
doc_string: "axis".to_string(),
r#type: 2, // INT
f: 0.0,
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let att_keepdims = AttributeProto {
name: "keepdims".to_string(),
ref_attr_name: "keepdims".to_string(),
i: keepdims.unwrap_or(1),
doc_string: "keepdims".to_string(),
r#type: 2, // INT
f: 0.0,
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let att_select_last_index = AttributeProto {
name: "select_last_index".to_string(),
ref_attr_name: "select_last_index".to_string(),
i: select_last_index.unwrap_or(0),
doc_string: "select_last_index".to_string(),
r#type: 2, // INT
f: 0.0,
s: vec![],
t: None,
g: None,
sparse_tensor: None,
tp: None,
floats: vec![],
ints: vec![],
strings: vec![],
tensors: vec![],
graphs: vec![],
sparse_tensors: vec![],
type_protos: vec![],
};
let attrs = {
let mut mut_attrs = vec![];
if axis.is_some() {
mut_attrs.push(att_axis);
}
if keepdims.is_some() {
mut_attrs.push(att_keepdims);
}
if select_last_index.is_some() {
mut_attrs.push(att_select_last_index);
}
mut_attrs
};
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "ArgMin".to_string(),
domain: "".to_string(),
attribute: attrs,
input: vec![INPUT_X.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let expected = Tensor::new(expected, &Device::Cpu)?;
match expected.dims().len() {
1 => assert_eq!(z.to_vec1::<u32>()?, expected.to_vec1::<u32>()?),
2 => assert_eq!(z.to_vec2::<u32>()?, expected.to_vec2::<u32>()?),
_ => unreachable!(),
};
Ok(())
}
Ok(())
}