Sync upstream MLX sdpa vector kernels with mask (#2718)

* Sync upstream mlx sdpa vector kernels with mask

* Dispatch to the 2pass kernel

* Format
This commit is contained in:
Eric Buehler
2025-01-16 05:30:10 -05:00
committed by GitHub
parent 6fd2f63a15
commit 17cbbe4286
3 changed files with 486 additions and 49 deletions

View File

@ -1906,7 +1906,12 @@ pub fn call_sdpa_vector(
alpha
};
let pipeline = kernels.load_pipeline(device, Source::Sdpa, name)?;
let constants = Some(ConstantValues::new(vec![(
20,
Value::Bool(/* sdpa_vector_has_mask */ false),
)]));
let pipeline = kernels.load_pipeline_with_constants(device, Source::Sdpa, name, constants)?;
let encoder = ep.encoder();
let encoder: &ComputeCommandEncoderRef = encoder.as_ref();
encoder.set_compute_pipeline_state(&pipeline);
@ -1948,6 +1953,187 @@ pub fn call_sdpa_vector(
Ok(())
}
pub const SDPA_2PASS_BLOCKS: usize = 32;
/// SDPA vector 2pass is supported when:
/// - q head dim == 64, 96, 128
/// - no mask
/// - q,k,v are contiguous
#[allow(clippy::too_many_arguments)]
pub fn call_sdpa_vector_2pass(
device: &Device,
ep: impl EncoderProvider,
kernels: &Kernels,
q_offset: usize,
q_shape: &[usize],
q_buffer: &Buffer,
k_offset: usize,
k_shape: &[usize],
k_stride: &[usize],
k_buffer: &Buffer,
v_offset: usize,
v_stride: &[usize],
v_buffer: &Buffer,
output: &Buffer,
intermediate: &Buffer,
sums: &Buffer,
maxs: &Buffer,
alpha: f32,
softcapping: f32,
itype: SdpaDType,
) -> Result<(), MetalKernelError> {
let bk = q_shape.last().unwrap();
// First pass
{
let name_pass1 = match (bk, itype) {
(32, SdpaDType::F16) => "sdpa_vector_2pass_1_float16_t_32",
(64, SdpaDType::F16) => "sdpa_vector_2pass_1_float16_t_64",
(96, SdpaDType::F16) => "sdpa_vector_2pass_1_float16_t_96",
(128, SdpaDType::F16) => "sdpa_vector_2pass_1_float16_t_128",
(256, SdpaDType::F16) => "sdpa_vector_2pass_1_float16_t_256",
(32, SdpaDType::BF16) => "sdpa_vector_2pass_1_bfloat16_t_32",
(64, SdpaDType::BF16) => "sdpa_vector_2pass_1_bfloat16_t_64",
(96, SdpaDType::BF16) => "sdpa_vector_2pass_1_bfloat16_t_96",
(128, SdpaDType::BF16) => "sdpa_vector_2pass_1_bfloat16_t_128",
(256, SdpaDType::BF16) => "sdpa_vector_2pass_1_bfloat16_t_256",
(32, SdpaDType::F32) => "sdpa_vector_2pass_1_float_32",
(64, SdpaDType::F32) => "sdpa_vector_2pass_1_float_64",
(96, SdpaDType::F32) => "sdpa_vector_2pass_1_float_96",
(128, SdpaDType::F32) => "sdpa_vector_2pass_1_float_128",
(256, SdpaDType::F32) => "sdpa_vector_2pass_1_float_256",
(other, _) => {
return Err(MetalKernelError::SdpaHeadSizeMismatch {
variation: "vector_2pass_1",
got: *other,
expected: vec![32, 64, 96, 128, 256],
})
}
};
let gqa_factor = (q_shape[1] / k_shape[1]) as i32;
let n = k_shape[2] as i32;
let b = (q_shape[0] * q_shape[1]) as i32;
let kstride = k_stride[1];
let vstride = v_stride[1];
let alpha = if softcapping != 1. {
alpha / softcapping
} else {
alpha
};
let constants = Some(ConstantValues::new(vec![(
20,
Value::Bool(/* sdpa_vector_has_mask */ false),
)]));
let pipeline =
kernels.load_pipeline_with_constants(device, Source::Sdpa, &name_pass1, constants)?;
let encoder = ep.encoder();
let encoder: &ComputeCommandEncoderRef = encoder.as_ref();
encoder.set_compute_pipeline_state(&pipeline);
// q = (bs, qhead, seq, hidden)
// k/v = (bs, kv_head, kv_seq, hidden)
set_params!(
encoder,
(
(q_buffer, q_offset),
(k_buffer, k_offset),
(v_buffer, v_offset),
intermediate,
sums,
maxs,
gqa_factor,
n,
kstride,
vstride,
alpha,
softcapping
)
);
let grid_dims = MTLSize {
width: 1,
height: b as u64,
depth: SDPA_2PASS_BLOCKS as u64,
};
let group_dims = MTLSize {
width: 8 * 32,
height: 1,
depth: 1,
};
encoder.use_resource(q_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(k_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(v_buffer, metal::MTLResourceUsage::Read);
encoder.use_resource(intermediate, metal::MTLResourceUsage::Write);
encoder.use_resource(sums, metal::MTLResourceUsage::Write);
encoder.use_resource(maxs, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(grid_dims, group_dims);
}
// Final pass
{
let name_pass2 = match (bk, itype) {
(32, SdpaDType::F16) => "sdpa_vector_2pass_2_float16_t_32",
(64, SdpaDType::F16) => "sdpa_vector_2pass_2_float16_t_64",
(96, SdpaDType::F16) => "sdpa_vector_2pass_2_float16_t_96",
(128, SdpaDType::F16) => "sdpa_vector_2pass_2_float16_t_128",
(256, SdpaDType::F16) => "sdpa_vector_2pass_2_float16_t_256",
(32, SdpaDType::BF16) => "sdpa_vector_2pass_2_bfloat16_t_32",
(64, SdpaDType::BF16) => "sdpa_vector_2pass_2_bfloat16_t_64",
(96, SdpaDType::BF16) => "sdpa_vector_2pass_2_bfloat16_t_96",
(128, SdpaDType::BF16) => "sdpa_vector_2pass_2_bfloat16_t_128",
(256, SdpaDType::BF16) => "sdpa_vector_2pass_2_bfloat16_t_256",
(32, SdpaDType::F32) => "sdpa_vector_2pass_2_float_32",
(64, SdpaDType::F32) => "sdpa_vector_2pass_2_float_64",
(96, SdpaDType::F32) => "sdpa_vector_2pass_2_float_96",
(128, SdpaDType::F32) => "sdpa_vector_2pass_2_float_128",
(256, SdpaDType::F32) => "sdpa_vector_2pass_2_float_256",
(other, _) => {
return Err(MetalKernelError::SdpaHeadSizeMismatch {
variation: "vector_2pass_2",
got: *other,
expected: vec![32, 64, 96, 128, 256],
})
}
};
let b = (q_shape[0] * q_shape[1]) as i32;
let pipeline = kernels.load_pipeline(device, Source::Sdpa, &name_pass2)?;
let encoder = ep.encoder();
let encoder: &ComputeCommandEncoderRef = encoder.as_ref();
encoder.set_compute_pipeline_state(&pipeline);
// q = (bs, qhead, seq, hidden)
// k/v = (bs, kv_head, kv_seq, hidden)
set_params!(encoder, (intermediate, sums, maxs, output));
let grid_dims = MTLSize {
width: 1,
height: b as u64,
depth: 1,
};
let group_dims = MTLSize {
width: 1024,
height: 1,
depth: 1,
};
encoder.use_resource(intermediate, metal::MTLResourceUsage::Write);
encoder.use_resource(sums, metal::MTLResourceUsage::Write);
encoder.use_resource(maxs, metal::MTLResourceUsage::Write);
encoder.use_resource(output, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(grid_dims, group_dims);
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
pub fn call_im2col1d_strided(
device: &Device,

View File

@ -47,6 +47,8 @@ struct MLXScaledDotProductAttentionParams {
// ============ "mlx/backend/metal/kernels/scaled_dot_product_attention_params.sdpa_vector"
constant bool sdpa_vector_has_mask [[function_constant(20)]];
template <typename T, int D>
[[kernel]] void sdpa_vector(
const device T* queries [[buffer(0)]],
@ -59,14 +61,16 @@ template <typename T, int D>
const constant size_t& v_stride,
const constant float& scale,
const constant float& softcapping,
const device bool* mask [[function_constant(sdpa_vector_has_mask)]],
const constant int& mask_seq_stride [[function_constant(sdpa_vector_has_mask)]],
const constant int& mask_head_stride [[function_constant(sdpa_vector_has_mask)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
const int stride = BN * D;
constexpr int stride = BN * D;
typedef float U;
@ -84,6 +88,9 @@ template <typename T, int D>
queries += head_idx * D + simd_lid * elem_per_thread;
keys += kv_head_idx * k_stride + simd_gid * D + simd_lid * elem_per_thread;
values += kv_head_idx * v_stride + simd_gid * D + simd_lid * elem_per_thread;
if (sdpa_vector_has_mask) {
mask += head_idx * mask_head_stride + simd_gid * mask_seq_stride;
}
out += head_idx * D + simd_gid * elem_per_thread;
// Read the query and 0 the output accumulator
@ -99,40 +106,41 @@ template <typename T, int D>
// For each key
for (int i = simd_gid; i < N; i += BN) {
// Read the key
for (int i = 0; i < elem_per_thread; i++) {
k[i] = keys[i];
}
if (!sdpa_vector_has_mask || mask[0]) {
// Read the key
for (int j = 0; j < elem_per_thread; j++) {
k[j] = keys[j];
}
// Compute the i-th score
U score = 0;
for (int i = 0; i < elem_per_thread; i++) {
score += q[i] * k[i];
}
score = simd_sum(score);
if (softcapping != 1.) {
score = precise::tanh(score);
score = score * softcapping;
}
// Compute the i-th score
U score = 0;
for (int j = 0; j < elem_per_thread; j++) {
score += q[j] * k[j];
}
score = simd_sum(score);
if (softcapping != 1.) {
score = precise::tanh(score);
score = score * softcapping;
}
// Update the accumulators
U new_max = max(max_score, score);
U factor = fast::exp(max_score - new_max);
U exp_score = fast::exp(score - new_max);
// Update the accumulators
U new_max = max(max_score, score);
U factor = fast::exp(max_score - new_max);
U exp_score = fast::exp(score - new_max);
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
// Update the output accumulator
for (int i = 0; i < elem_per_thread; i++) {
o[i] = o[i] * factor + exp_score * values[i];
// Update the output accumulator
for (int j = 0; j < elem_per_thread; j++) {
o[j] = o[j] * factor + exp_score * values[j];
}
}
// Move the pointers to the next kv
keys += stride;
values += stride;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Each thread has a partial part of the output so we need to combine them.
@ -163,6 +171,164 @@ template <typename T, int D>
}
}
template <typename T, int D>
[[kernel]] void sdpa_vector_2pass_1(
const device T* queries [[buffer(0)]],
const device T* keys [[buffer(1)]],
const device T* values [[buffer(2)]],
device float* out [[buffer(3)]],
device float* sums [[buffer(4)]],
device float* maxs [[buffer(5)]],
const constant int& gqa_factor,
const constant int& N,
const constant size_t& k_stride,
const constant size_t& v_stride,
const constant float& scale,
const constant float& softcapping,
const device bool* mask [[function_constant(sdpa_vector_has_mask)]],
const constant int& mask_seq_stride [[function_constant(sdpa_vector_has_mask)]],
const constant int& mask_head_stride [[function_constant(sdpa_vector_has_mask)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int BN = 8;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
constexpr int stride = BN * D;
constexpr int blocks = 32;
typedef float U;
thread U q[elem_per_thread];
thread U k[elem_per_thread];
thread U o[elem_per_thread];
threadgroup U outputs[BN * BD];
threadgroup U max_scores[BN];
threadgroup U sum_exp_scores[BN];
// Adjust positions
const int block_idx = tid.z;
const int head_idx = tid.y;
const int kv_head_idx = head_idx / gqa_factor;
queries += head_idx * D + simd_lid * elem_per_thread;
keys += kv_head_idx * k_stride + (block_idx * BN + simd_gid) * D +
simd_lid * elem_per_thread;
values += kv_head_idx * v_stride + (block_idx * BN + simd_gid) * D +
simd_lid * elem_per_thread;
out += head_idx * blocks * D + block_idx * D + simd_lid * elem_per_thread;
if (sdpa_vector_has_mask) {
mask += head_idx * mask_head_stride +
(block_idx * BN + simd_gid) * mask_seq_stride;
}
sums += head_idx * blocks + block_idx;
maxs += head_idx * blocks + block_idx;
// Read the query and 0 the output accumulator
for (int i = 0; i < elem_per_thread; i++) {
q[i] = static_cast<U>(scale) * queries[i];
}
for (int i = 0; i < elem_per_thread; i++) {
o[i] = 0;
}
U max_score = -1e9;
U sum_exp_score = 0;
// For each key
for (int i = block_idx * BN + simd_gid; i < N; i += blocks * BN) {
if (!sdpa_vector_has_mask || mask[0]) {
// Read the key
for (int i = 0; i < elem_per_thread; i++) {
k[i] = keys[i];
}
// Compute the i-th score
U score = 0;
for (int i = 0; i < elem_per_thread; i++) {
score += q[i] * k[i];
}
score = simd_sum(score);
if (softcapping != 1.) {
score = precise::tanh(score);
score = score * softcapping;
}
// Update the accumulators
U new_max = max(max_score, score);
U factor = fast::exp(max_score - new_max);
U exp_score = fast::exp(score - new_max);
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
// Update the output accumulator
for (int i = 0; i < elem_per_thread; i++) {
o[i] = o[i] * factor + exp_score * values[i];
}
}
// Move the pointers to the next kv
keys += blocks * stride;
values += blocks * stride;
if (sdpa_vector_has_mask) {
mask += BN * blocks * mask_seq_stride;
}
}
}
template <typename T, int D>
[[kernel]] void sdpa_vector_2pass_2(
const device float* partials [[buffer(0)]],
const device float* sums [[buffer(1)]],
const device float* maxs [[buffer(2)]],
device T* out [[buffer(3)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
constexpr int blocks = 32;
typedef float U;
thread U o[elem_per_thread];
threadgroup U outputs[BN * BD];
// Adjust positions
const int head_idx = tid.y;
partials += head_idx * blocks * D + simd_gid * D + simd_lid * elem_per_thread;
sums += head_idx * blocks;
maxs += head_idx * blocks;
out += head_idx * D + simd_gid * elem_per_thread;
// First everybody reads the max and sum_exp
U max_score = maxs[simd_lid];
U new_max = simd_max(max_score);
U factor = fast::exp(max_score - new_max);
U sum_exp_score = simd_sum(sums[simd_lid] * factor);
// Now read the block into registers and then use shared memory to transpose
// it
for (int i = 0; i < elem_per_thread; i++) {
o[i] = partials[i];
}
for (int i = 0; i < elem_per_thread; i++) {
outputs[simd_lid * BD + simd_gid] = o[i];
threadgroup_barrier(mem_flags::mem_threadgroup);
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid] * factor) / sum_exp_score;
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// And write the output
if (simd_lid == 0) {
for (int i = 0; i < elem_per_thread; i++) {
out[i] = static_cast<T>(o[i]);
}
}
}
// ============ "mlx/backend/metal/kernels/steel/defines.h"
#define STEEL_CONST static constant constexpr const
@ -1238,9 +1404,41 @@ instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 256, 2, 2);
const constant size_t& v_stride, \
const constant float& scale, \
const constant float& softcapping, \
const device bool* mask [[function_constant(sdpa_vector_has_mask)]],, \
const constant int& mask_seq_stride [[function_constant(sdpa_vector_has_mask)]], \
const constant int& mask_head_stride [[function_constant(sdpa_vector_has_mask)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
uint simd_lid [[thread_index_in_simdgroup]]); \
template [[host_name("sdpa_vector_2pass_1_" #type "_" #head_dim)]] \
[[kernel]] void sdpa_vector_2pass_1<type, head_dim>( \
const device type* queries [[buffer(0)]], \
const device type* keys [[buffer(1)]], \
const device type* values [[buffer(2)]], \
device float* out [[buffer(3)]], \
device float* sums [[buffer(4)]], \
device float* maxs [[buffer(5)]], \
const constant int& gqa_factor, \
const constant int& N, \
const constant size_t& k_stride, \
const constant size_t& v_stride, \
const constant float& scale, \
const constant float& softcapping, \
const device bool* mask [[function_constant(sdpa_vector_has_mask)]],, \
const constant int& mask_seq_stride [[function_constant(sdpa_vector_has_mask)]], \
const constant int& mask_head_stride [[function_constant(sdpa_vector_has_mask)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]); \
template [[host_name("sdpa_vector_2pass_2_" #type "_" #head_dim)]] \
[[kernel]] void sdpa_vector_2pass_2<type, head_dim>( \
const device float* partials [[buffer(0)]], \
const device float* sums [[buffer(1)]], \
const device float* maxs [[buffer(2)]], \
device type* out [[buffer(3)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]); \
#define instantiate_sdpa_vector_heads(type) \
instantiate_sdpa_vector(type, 32) \

View File

@ -1074,27 +1074,80 @@ impl candle::CustomOp3 for Sdpa {
let command_buffer = q.device().command_buffer()?;
if supports_sdpa_vector {
command_buffer.set_label("vector_attention");
candle_metal_kernels::call_sdpa_vector(
q.device().device(),
&command_buffer,
q.device().kernels(),
q_l.start_offset(),
q_l.dims(),
q.buffer(),
k_l.start_offset(),
k_l.dims(),
k_l.stride(),
k.buffer(),
v_l.start_offset(),
v_l.stride(),
v.buffer(),
&output,
self.scale,
self.softcapping,
itype,
)
.map_err(candle::Error::wrap)?;
// Route to the 2 pass fused attention if the k seqlen is large.
// https://github.com/ml-explore/mlx/pull/1597
const TWO_PASS_K_THRESHOLD: usize = 1024;
if k_l.dim(2)? >= TWO_PASS_K_THRESHOLD {
let mut intermediate_shape = [
&out_dims[0..out_dims.len() - 2],
&[candle_metal_kernels::SDPA_2PASS_BLOCKS],
&[out_dims[out_dims.len() - 1]],
]
.concat();
let intermediate = device.new_buffer(
intermediate_shape.iter().product::<usize>(),
DType::F32,
"sdpa_2pass_intermediate",
)?;
let _ = intermediate_shape.pop().unwrap();
let sums = device.new_buffer(
intermediate_shape.iter().product::<usize>(),
DType::F32,
"sdpa_2pass_sums",
)?;
let maxs = device.new_buffer(
intermediate_shape.iter().product::<usize>(),
DType::F32,
"sdpa_2pass_maxs",
)?;
command_buffer.set_label("vector_attention");
candle_metal_kernels::call_sdpa_vector_2pass(
q.device().device(),
&command_buffer,
q.device().kernels(),
q_l.start_offset(),
q_l.dims(),
q.buffer(),
k_l.start_offset(),
k_l.dims(),
k_l.stride(),
k.buffer(),
v_l.start_offset(),
v_l.stride(),
v.buffer(),
&output,
&intermediate,
&sums,
&maxs,
self.scale,
self.softcapping,
itype,
)
.map_err(candle::Error::wrap)?;
} else {
command_buffer.set_label("vector_attention");
candle_metal_kernels::call_sdpa_vector(
q.device().device(),
&command_buffer,
q.device().kernels(),
q_l.start_offset(),
q_l.dims(),
q.buffer(),
k_l.start_offset(),
k_l.dims(),
k_l.stride(),
k.buffer(),
v_l.start_offset(),
v_l.stride(),
v.buffer(),
&output,
self.scale,
self.softcapping,
itype,
)
.map_err(candle::Error::wrap)?;
}
} else if supports_sdpa_full {
if q_l.dim(2)? != k_l.dim(2)? {
candle::bail!(