Simple example fix.

This commit is contained in:
Ubuntu
2023-06-29 11:10:57 +00:00
parent 3872dc4751
commit 1913512f42
2 changed files with 58 additions and 50 deletions

View File

@ -13,6 +13,7 @@
// transposition operations.
use anyhow::{Error as E, Result};
use clap::Parser;
use rand::{distributions::Distribution, thread_rng};
use candle::{DType, Device, Tensor};
use candle_hub::{api::Api, Repo, RepoType};
@ -137,10 +138,7 @@ impl Embedding {
}
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
Ok(Tensor::embedding(
indexes,
&self.embeddings.to_dtype(DType::F32)?,
)?)
Ok(Tensor::embedding(indexes, &self.embeddings)?)
}
}
@ -354,7 +352,8 @@ impl Llama {
fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
// TODO: Support for mini-batches? (i.e. r2)
let t = x.shape().r1()?;
let mut x = self.wte.forward(x)?;
let x = self.wte.forward(x)?;
let mut x = x.to_dtype(DType::F32)?;
for block in self.blocks.iter() {
x = block.forward(&x, freqs_cis)?;
}
@ -399,8 +398,8 @@ struct Args {
npy: bool,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 1.0)]
temperature: f64,
#[arg(long)]
temperature: Option<f64>,
/// The length of the sample to generate (in tokens).
#[arg(long, default_value_t = 100)]
@ -420,8 +419,34 @@ async fn main() -> Result<()> {
};
let api = Api::new()?;
let repo = Repo::new("Narsil/amall-7b".to_string(), RepoType::Model);
let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
println!("Filename {tokenizer_filename:?}");
println!("building the model");
let config = Config::config_7b();
let cache = Cache::new(&device);
let start = std::time::Instant::now();
let (llama, tokenizer_filename) = if args.npy {
println!("building the model (NPY)");
(
Llama::load_npy(&device, "/data/llama.npz", &cache, &config)?,
std::path::Path::new("llama-tokenizer.json").to_path_buf(),
)
} else {
let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
let filename = api.get(&repo, rfilename).await?;
filenames.push(filename);
}
println!("building the model (SF)");
(
Llama::load(&device, &filenames, &cache, &config)?,
tokenizer_filename,
)
};
println!("Loaded in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let mut tokens = tokenizer
.encode(START_PROMPT, true)
@ -429,55 +454,39 @@ async fn main() -> Result<()> {
.get_ids()
.to_vec();
let mut filenames = vec![];
for rfilename in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
] {
let filename = api.get(&repo, rfilename).await?;
filenames.push(filename);
}
println!("building the model");
let config = Config::config_7b();
let cache = Cache::new(&device);
let start = std::time::Instant::now();
let llama = if args.npy {
println!("building the model (NPY)");
Llama::load_npy(&device, &filenames, &cache, &config)?
} else {
println!("building the model (SF)");
Llama::load(&device, &filenames, &cache, &config)?
};
println!("Loaded in {:?}", start.elapsed());
println!("pre-computing the positional embeddings");
let freqs_cis = precompute_freqs_cis(&config, &device)?;
println!("starting the inference loop");
let mut new_tokens = vec![];
//let mut rng = thread_rng();
let mut rng = thread_rng();
let start_gen = std::time::Instant::now();
for index in 0..args.sample_len {
let start_gen = std::time::Instant::now();
let ctxt = &tokens[tokens.len().saturating_sub(CONTEXT_SIZE)..];
let input = Tensor::new(ctxt, &device)?;
let logits = llama.forward(&input, &freqs_cis)?;
let prs = (&logits / args.temperature)?.softmax(logits.rank() - 1)?;
let logits_v: Vec<f32> = prs.to_vec1()?;
let next_token = logits_v
.iter()
.enumerate()
.fold((0, logits_v[0]), |(idx_max, val_max), (idx, val)| {
if &val_max > val {
(idx_max, val_max)
} else {
(idx, *val)
}
})
.0 as u32;
// let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
// let next_token = distr.sample(&mut rng) as u32;
let next_token = if let Some(temperature) = args.temperature {
println!("Sampling with temperature {temperature:?}");
let prs = (&logits / temperature)?.softmax(logits.rank() - 1)?;
let logits_v: Vec<f32> = prs.to_vec1()?;
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
distr.sample(&mut rng) as u32
} else {
let logits_v: Vec<f32> = logits.to_vec1()?;
logits_v
.iter()
.enumerate()
.fold((0, logits_v[0]), |(idx_max, val_max), (idx, val)| {
if &val_max > val {
(idx_max, val_max)
} else {
(idx, *val)
}
})
.0 as u32
};
tokens.push(next_token);
new_tokens.push(next_token);
println!("> {:?}", start_gen.elapsed());

View File

@ -1,7 +1,6 @@
use super::*;
use candle::{DType, Device, Result, Shape, Tensor, WithDType};
use std::collections::HashMap;
use std::path::PathBuf;
use std::sync::Arc;
#[allow(dead_code)]
@ -142,11 +141,11 @@ impl Block {
impl Llama {
pub fn load_npy(
device: &Device,
_filenames: &[PathBuf],
filename: &str,
cache: &Cache,
config: &Config,
) -> Result<Self> {
let weight_path = std::path::Path::new("/data/llama.npz");
let weight_path = std::path::Path::new(filename);
let weights = if weight_path.exists() {
println!("loading weights from {weight_path:?}");
let start_load = std::time::Instant::now();