mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Move the var-builder in a central place. (#130)
This commit is contained in:
@ -4,73 +4,15 @@
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{anyhow, Error as E, Result};
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_hub::{api::sync::Api, Cache, Repo, RepoType};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
||||
use clap::Parser;
|
||||
use serde::Deserialize;
|
||||
use std::collections::HashMap;
|
||||
use tokenizers::{PaddingParams, Tokenizer};
|
||||
|
||||
const DTYPE: DType = DType::F32;
|
||||
|
||||
struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
enum HiddenAct {
|
||||
@ -633,7 +575,7 @@ impl Args {
|
||||
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
|
||||
let model = BertModel::load(&vb, &config)?;
|
||||
Ok((model, tokenizer))
|
||||
}
|
||||
|
@ -7,12 +7,13 @@ extern crate intel_mkl_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor, D};
|
||||
use candle_hub::{api::sync::Api, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod model;
|
||||
use model::{Config, Falcon, VarBuilder};
|
||||
use model::{Config, Falcon};
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
const DTYPE: DType = DType::F32;
|
||||
|
@ -1,67 +1,9 @@
|
||||
use anyhow::Result;
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear};
|
||||
use std::collections::HashMap;
|
||||
use candle::{DType, Device, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
||||
|
||||
const MAX_SEQ_LEN: usize = 5000;
|
||||
|
||||
pub struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: &Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
||||
let bias = if bias {
|
||||
|
@ -1,68 +1,11 @@
|
||||
#![allow(dead_code)]
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||
use std::collections::HashMap;
|
||||
use candle::Tensor;
|
||||
|
||||
const MAX_SEQ_LEN: usize = 5000;
|
||||
|
||||
pub struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: &Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub type VarBuilder<'a> = candle_nn::VarBuilder<'a>;
|
||||
pub type Linear = candle_nn::Linear;
|
||||
|
||||
pub fn linear(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Linear> {
|
||||
|
@ -12,13 +12,14 @@ extern crate intel_mkl_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_hub::{api::sync::Api, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod audio;
|
||||
mod model;
|
||||
use model::{Config, VarBuilder, Whisper};
|
||||
use model::{Config, Whisper};
|
||||
|
||||
const DTYPE: DType = DType::F32;
|
||||
|
||||
|
@ -1,67 +1,9 @@
|
||||
// We use anyhow rather than candle errors as it provides better support for getting the backtrace
|
||||
// back when using RUST_LIB_BACKTRACE=1.
|
||||
use anyhow::Result;
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||
use candle_nn::{Conv1d, Conv1dConfig, Embedding, LayerNorm, Linear};
|
||||
use candle::{Device, Tensor};
|
||||
use candle_nn::{Conv1d, Conv1dConfig, Embedding, LayerNorm, Linear, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The names in comments correspond to the original implementation:
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
|
||||
|
@ -5,9 +5,11 @@ mod conv;
|
||||
mod embedding;
|
||||
mod layer_norm;
|
||||
mod linear;
|
||||
mod var_builder;
|
||||
|
||||
pub use activation::Activation;
|
||||
pub use conv::{Conv1d, Conv1dConfig};
|
||||
pub use embedding::Embedding;
|
||||
pub use layer_norm::LayerNorm;
|
||||
pub use linear::Linear;
|
||||
pub use var_builder::VarBuilder;
|
||||
|
59
candle-nn/src/var_builder.rs
Normal file
59
candle-nn/src/var_builder.rs
Normal file
@ -0,0 +1,59 @@
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
pub dtype: DType,
|
||||
pub device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user