mirror of
https://github.com/huggingface/candle.git
synced 2025-06-22 04:22:50 +00:00
Improve arg reduce and add contiguous impl
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
mod benchmarks;
|
||||
|
||||
use criterion::criterion_main;
|
||||
criterion_main!(benchmarks::reduce::benches);
|
||||
criterion_main!(benchmarks::reduce::benches);
|
||||
|
@ -1,19 +1,25 @@
|
||||
use candle_core::{DType, Tensor};
|
||||
use crate::benchmarks::{bench_name, device, BenchDevice};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use criterion::{black_box, criterion_group, Criterion, Throughput};
|
||||
use std::time::Instant;
|
||||
use crate::benchmarks::{bench_name, device, BenchDevice};
|
||||
|
||||
fn run(a: &Tensor) {
|
||||
fn run_sum(a: &Tensor) {
|
||||
a.sum(2).unwrap();
|
||||
}
|
||||
fn run_arg_min(a: &Tensor) {
|
||||
a.argmin(2).unwrap();
|
||||
}
|
||||
|
||||
fn criterion_benchmark(c: &mut Criterion) {
|
||||
let device = device().unwrap();
|
||||
run_reduce(c, &device);
|
||||
run_arg_reduce(c, &device);
|
||||
}
|
||||
fn run_reduce(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
let m = 2048;
|
||||
let k = 2048;
|
||||
|
||||
let device = device().unwrap();
|
||||
|
||||
let a = Tensor::rand(-1000.0f32, 1000.0f32, (b, m, k), &device).unwrap();
|
||||
|
||||
let flops = b * m * k * DType::F32.size_in_bytes();
|
||||
@ -24,7 +30,31 @@ fn criterion_benchmark(c: &mut Criterion) {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run(black_box(&a));
|
||||
run_sum(black_box(&a));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
})
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
fn run_arg_reduce(c: &mut Criterion, device: &Device) {
|
||||
let b = 1;
|
||||
let m = 2048;
|
||||
let k = 2048;
|
||||
|
||||
let a = Tensor::rand(-1000.0f32, 1000.0f32, (b, m, k), &device).unwrap();
|
||||
|
||||
let flops = b * m * k * DType::F32.size_in_bytes();
|
||||
|
||||
let mut group = c.benchmark_group(bench_name("arg_reduce"));
|
||||
group.throughput(Throughput::Bytes(flops as u64));
|
||||
group.bench_function("iter", move |b| {
|
||||
b.iter_custom(|iters| {
|
||||
let start = Instant::now();
|
||||
for _i in 0..iters {
|
||||
run_arg_min(black_box(&a));
|
||||
}
|
||||
device.sync().unwrap();
|
||||
start.elapsed()
|
||||
|
@ -511,59 +511,56 @@ impl BackendStorage for MetalStorage {
|
||||
(ReduceOp::Sum, DType::F32) => ("fast_sum_f32", false, false),
|
||||
(ReduceOp::Min, DType::F32) => ("fast_min_f32", true, false),
|
||||
(ReduceOp::Max, DType::F32) => ("fast_max_f32", true, false),
|
||||
//(ReduceOp::ArgMin, DType::F32) => ("fast_argmin_f32", true, true),
|
||||
//(ReduceOp::ArgMax, DType::F32) => ("fast_argmax_f32", true, true),
|
||||
(ReduceOp::ArgMin, DType::F32) => ("fast_argmin_f32", true, true),
|
||||
(ReduceOp::ArgMax, DType::F32) => ("fast_argmax_f32", true, true),
|
||||
(ReduceOp::Sum, DType::U32) => ("fast_sum_u32", false, false),
|
||||
(ReduceOp::Min, DType::U32) => ("fast_min_u32", true, false),
|
||||
(ReduceOp::Max, DType::U32) => ("fast_max_u32", true, false),
|
||||
//(ReduceOp::ArgMin, DType::U32) => ("fast_argmin_u32", true, true),
|
||||
//(ReduceOp::ArgMax, DType::U32) => ("fast_argmax_u32", true, true),
|
||||
(ReduceOp::ArgMin, DType::U32) => ("fast_argmin_u32", true, true),
|
||||
(ReduceOp::ArgMax, DType::U32) => ("fast_argmax_u32", true, true),
|
||||
(ReduceOp::Sum, DType::F16) => ("fast_sum_f16", false, false),
|
||||
(ReduceOp::Min, DType::F16) => ("fast_min_f16", true, false),
|
||||
(ReduceOp::Max, DType::F16) => ("fast_max_f16", true, false),
|
||||
//(ReduceOp::ArgMin, DType::F16) => ("fast_argmin_f16", true, true),
|
||||
//(ReduceOp::ArgMax, DType::F16) => ("fast_argmax_f16", true, true),
|
||||
(ReduceOp::ArgMin, DType::F16) => ("fast_argmin_f16", true, true),
|
||||
(ReduceOp::ArgMax, DType::F16) => ("fast_argmax_f16", true, true),
|
||||
(ReduceOp::Sum, DType::BF16) => ("fast_sum_bf16", false, false),
|
||||
(ReduceOp::Min, DType::BF16) => ("fast_min_bf16", true, false),
|
||||
(ReduceOp::Max, DType::BF16) => ("fast_max_bf16", true, false),
|
||||
//(ReduceOp::ArgMin, DType::BF16) => ("fast_argmin_bf16", true, true),
|
||||
//(ReduceOp::ArgMax, DType::BF16) => ("fast_argmax_bf16", true, true),
|
||||
(ReduceOp::ArgMin, DType::BF16) => ("fast_argmin_bf16", true, true),
|
||||
(ReduceOp::ArgMax, DType::BF16) => ("fast_argmax_bf16", true, true),
|
||||
(ReduceOp::Sum, DType::I64) => ("fast_sum_i64", false, false),
|
||||
(ReduceOp::Min, DType::I64) => ("fast_min_i64", true, false),
|
||||
(ReduceOp::Max, DType::I64) => ("fast_max_i64", true, false),
|
||||
//(ReduceOp::ArgMin, DType::I64) => ("fast_argmin_i64", true, true),
|
||||
//(ReduceOp::ArgMax, DType::I64) => ("fast_argmax_i64", true, true),
|
||||
(ReduceOp::ArgMin, DType::I64) => ("fast_argmin_i64", true, true),
|
||||
(ReduceOp::ArgMax, DType::I64) => ("fast_argmax_i64", true, true),
|
||||
(ReduceOp::Sum, DType::U8) => ("fast_sum_u8", false, false),
|
||||
(ReduceOp::Min, DType::U8) => ("fast_min_u8", true, false),
|
||||
(ReduceOp::Max, DType::U8) => ("fast_max_u8", true, false),
|
||||
//(ReduceOp::ArgMin, DType::U8) => ("fast_argmin_u8", true, true),
|
||||
//(ReduceOp::ArgMax, DType::U8) => ("fast_argmax_u8", true, true),
|
||||
//(k, dtype) => crate::bail!("Metal reduce op {k:?} {dtype:?} not implemented"),
|
||||
_ => ("fall back to strided impl", false, false)
|
||||
};
|
||||
|
||||
if name != "fall back to strided impl" {
|
||||
if check_empty && layout.shape().elem_count() == 0 {
|
||||
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
|
||||
(ReduceOp::ArgMin, DType::U8) => ("fast_argmin_u8", true, true),
|
||||
(ReduceOp::ArgMax, DType::U8) => ("fast_argmax_u8", true, true),
|
||||
(k, dtype) => {
|
||||
crate::bail!("Metal contiguous reduce op {k:?} {dtype:?} not implemented")
|
||||
}
|
||||
|
||||
|
||||
let buffer = device.new_buffer(1, self.dtype, "reduce")?;
|
||||
let command_buffer = self.device.command_buffer()?;
|
||||
candle_metal_kernels::call_reduce_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
name,
|
||||
layout.shape().elem_count(),
|
||||
dst_el,
|
||||
&self.buffer,
|
||||
layout.start_offset() * self.dtype.size_in_bytes(),
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
return Ok(Self::new(buffer, device, self.dtype));
|
||||
};
|
||||
if check_empty && layout.shape().elem_count() == 0 {
|
||||
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
|
||||
}
|
||||
|
||||
let buffer = device.new_buffer(1, self.dtype, "reduce")?;
|
||||
let command_buffer = self.device.command_buffer()?;
|
||||
candle_metal_kernels::call_reduce_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
name,
|
||||
layout.shape().elem_count(),
|
||||
dst_el,
|
||||
&self.buffer,
|
||||
layout.start_offset() * self.dtype.size_in_bytes(),
|
||||
&buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
return Ok(Self::new(buffer, device, self.dtype));
|
||||
}
|
||||
|
||||
for &dim_idx in sum_dims.iter() {
|
||||
@ -602,7 +599,7 @@ impl BackendStorage for MetalStorage {
|
||||
(ReduceOp::Max, DType::U8) => ("fast_max_u8_strided", true, false),
|
||||
(ReduceOp::ArgMin, DType::U8) => ("fast_argmin_u8_strided", true, true),
|
||||
(ReduceOp::ArgMax, DType::U8) => ("fast_argmax_u8_strided", true, true),
|
||||
(k, dtype) => crate::bail!("Metal reduce op {k:?} {dtype:?} not implemented"),
|
||||
(k, dtype) => crate::bail!("Metal strided reduce op {k:?} {dtype:?} not implemented"),
|
||||
};
|
||||
if check_empty && layout.shape().elem_count() == 0 {
|
||||
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
|
||||
|
Reference in New Issue
Block a user