Add the gradient for reduce-sum. (#162)

* Add the gradient for reduce-sum.

* And add the gradient for the broadcast ops.

* Add some backprop tests.

* Add some linear regression example.
This commit is contained in:
Laurent Mazare
2023-07-13 20:14:10 +01:00
committed by GitHub
parent 3c02ea56b0
commit 23e105cd94
4 changed files with 74 additions and 7 deletions

View File

@ -179,11 +179,33 @@ impl Tensor {
start_idx += len;
}
}
Op::Broadcast(_arg) => {
return Err(Error::BackwardNotSupported { op: "broadcast" })
Op::Broadcast(arg) => {
let arg_dims = arg.dims();
let node_dims = node.dims();
// The number of dims that have been inserted on the left.
let left_dims = node_dims.len() - arg_dims.len();
let mut sum_dims: Vec<usize> = (0..left_dims).collect();
for (dim, (node_dim, arg_dim)) in node_dims[left_dims..]
.iter()
.zip(arg_dims.iter())
.enumerate()
{
if node_dim != arg_dim {
sum_dims.push(dim + left_dims)
}
}
let mut arg_grad = grad.sum(sum_dims.as_slice())?;
// sum_dims has increasing values.
for &dim in sum_dims.iter().rev() {
arg_grad = arg_grad.squeeze(dim)?
}
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.broadcast_add(&arg_grad)?
}
Op::Sum(_arg, _sum_dims) => {
return Err(Error::BackwardNotSupported { op: "sum" })
Op::Sum(arg, _sum_dims) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.broadcast_add(&grad)?
}
Op::ToDType(arg) => {
let sum_grad = grads.or_insert(arg)?;

View File

@ -16,6 +16,26 @@ fn simple_grad(device: &Device) -> Result<()> {
Ok(())
}
fn sum_grad(device: &Device) -> Result<()> {
let x = Var::new(&[3f32, 1., 4.], device)?;
let x = x.as_tensor();
let y = (x.sqr()?.sum(&[0])? * 2.)?;
let grads = y.backward()?;
let grad_x = grads.get(x).context("no grad for x")?;
assert_eq!(y.to_vec1::<f32>()?, [52.]);
// y = 2.x^2 so dy/dx = 4.x
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
// Same test as before but squeezing on the last dimension.
let y = (x.sqr()?.sum(&[0])? * 2.)?.squeeze(0)?;
let grads = y.backward()?;
let grad_x = grads.get(x).context("no grad for x")?;
assert_eq!(y.to_scalar::<f32>()?, 52.);
// y = 2.x^2 so dy/dx = 4.x
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
Ok(())
}
fn matmul_grad(device: &Device) -> Result<()> {
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let x = Var::from_slice(&data, (2, 2, 3), device)?;
@ -60,5 +80,6 @@ fn grad_descent(device: &Device) -> Result<()> {
}
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);

View File

@ -39,7 +39,7 @@ impl SGD {
let grads = loss.backward()?;
for var in self.vars.iter() {
if let Some(grad) = grads.get(var) {
var.set(&var.sub(&(grad * self.learning_rate)?)?)?
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
}
}
Ok(())

View File

@ -2,8 +2,8 @@
extern crate intel_mkl_src;
use anyhow::Result;
use candle::{Device, Var};
use candle_nn::SGD;
use candle::{Device, Tensor, Var};
use candle_nn::{Linear, SGD};
#[test]
fn sgd_optim() -> Result<()> {
@ -17,3 +17,27 @@ fn sgd_optim() -> Result<()> {
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
Ok(())
}
#[test]
fn sgd_linear_regression() -> Result<()> {
// Generate some linear data, y = 3.x1 + x2 - 2.
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let sgd = SGD::new(&[&w, &b], 0.004);
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..1000 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
sgd.backward_step(&loss)?;
}
assert_eq!(w.to_vec2::<f32>()?, &[[2.9983196, 0.99790204]]);
assert_eq!(b.to_scalar::<f32>()?, -1.9796902);
Ok(())
}