mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Add the gradient for reduce-sum. (#162)
* Add the gradient for reduce-sum. * And add the gradient for the broadcast ops. * Add some backprop tests. * Add some linear regression example.
This commit is contained in:
@ -179,11 +179,33 @@ impl Tensor {
|
|||||||
start_idx += len;
|
start_idx += len;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Op::Broadcast(_arg) => {
|
Op::Broadcast(arg) => {
|
||||||
return Err(Error::BackwardNotSupported { op: "broadcast" })
|
let arg_dims = arg.dims();
|
||||||
|
let node_dims = node.dims();
|
||||||
|
// The number of dims that have been inserted on the left.
|
||||||
|
let left_dims = node_dims.len() - arg_dims.len();
|
||||||
|
let mut sum_dims: Vec<usize> = (0..left_dims).collect();
|
||||||
|
for (dim, (node_dim, arg_dim)) in node_dims[left_dims..]
|
||||||
|
.iter()
|
||||||
|
.zip(arg_dims.iter())
|
||||||
|
.enumerate()
|
||||||
|
{
|
||||||
|
if node_dim != arg_dim {
|
||||||
|
sum_dims.push(dim + left_dims)
|
||||||
}
|
}
|
||||||
Op::Sum(_arg, _sum_dims) => {
|
}
|
||||||
return Err(Error::BackwardNotSupported { op: "sum" })
|
|
||||||
|
let mut arg_grad = grad.sum(sum_dims.as_slice())?;
|
||||||
|
// sum_dims has increasing values.
|
||||||
|
for &dim in sum_dims.iter().rev() {
|
||||||
|
arg_grad = arg_grad.squeeze(dim)?
|
||||||
|
}
|
||||||
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
|
*sum_grad = sum_grad.broadcast_add(&arg_grad)?
|
||||||
|
}
|
||||||
|
Op::Sum(arg, _sum_dims) => {
|
||||||
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
|
*sum_grad = sum_grad.broadcast_add(&grad)?
|
||||||
}
|
}
|
||||||
Op::ToDType(arg) => {
|
Op::ToDType(arg) => {
|
||||||
let sum_grad = grads.or_insert(arg)?;
|
let sum_grad = grads.or_insert(arg)?;
|
||||||
|
@ -16,6 +16,26 @@ fn simple_grad(device: &Device) -> Result<()> {
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn sum_grad(device: &Device) -> Result<()> {
|
||||||
|
let x = Var::new(&[3f32, 1., 4.], device)?;
|
||||||
|
let x = x.as_tensor();
|
||||||
|
let y = (x.sqr()?.sum(&[0])? * 2.)?;
|
||||||
|
let grads = y.backward()?;
|
||||||
|
let grad_x = grads.get(x).context("no grad for x")?;
|
||||||
|
assert_eq!(y.to_vec1::<f32>()?, [52.]);
|
||||||
|
// y = 2.x^2 so dy/dx = 4.x
|
||||||
|
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
|
||||||
|
|
||||||
|
// Same test as before but squeezing on the last dimension.
|
||||||
|
let y = (x.sqr()?.sum(&[0])? * 2.)?.squeeze(0)?;
|
||||||
|
let grads = y.backward()?;
|
||||||
|
let grad_x = grads.get(x).context("no grad for x")?;
|
||||||
|
assert_eq!(y.to_scalar::<f32>()?, 52.);
|
||||||
|
// y = 2.x^2 so dy/dx = 4.x
|
||||||
|
assert_eq!(grad_x.to_vec1::<f32>()?, &[12., 4., 16.]);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
fn matmul_grad(device: &Device) -> Result<()> {
|
fn matmul_grad(device: &Device) -> Result<()> {
|
||||||
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
|
||||||
let x = Var::from_slice(&data, (2, 2, 3), device)?;
|
let x = Var::from_slice(&data, (2, 2, 3), device)?;
|
||||||
@ -60,5 +80,6 @@ fn grad_descent(device: &Device) -> Result<()> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
|
test_device!(simple_grad, simple_grad_cpu, simple_grad_gpu);
|
||||||
|
test_device!(sum_grad, sum_grad_cpu, sum_grad_gpu);
|
||||||
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
|
test_device!(matmul_grad, matmul_grad_cpu, matmul_grad_gpu);
|
||||||
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
|
test_device!(grad_descent, grad_descent_cpu, grad_descent_gpu);
|
||||||
|
@ -39,7 +39,7 @@ impl SGD {
|
|||||||
let grads = loss.backward()?;
|
let grads = loss.backward()?;
|
||||||
for var in self.vars.iter() {
|
for var in self.vars.iter() {
|
||||||
if let Some(grad) = grads.get(var) {
|
if let Some(grad) = grads.get(var) {
|
||||||
var.set(&var.sub(&(grad * self.learning_rate)?)?)?
|
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
extern crate intel_mkl_src;
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
use candle::{Device, Var};
|
use candle::{Device, Tensor, Var};
|
||||||
use candle_nn::SGD;
|
use candle_nn::{Linear, SGD};
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn sgd_optim() -> Result<()> {
|
fn sgd_optim() -> Result<()> {
|
||||||
@ -17,3 +17,27 @@ fn sgd_optim() -> Result<()> {
|
|||||||
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
|
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn sgd_linear_regression() -> Result<()> {
|
||||||
|
// Generate some linear data, y = 3.x1 + x2 - 2.
|
||||||
|
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
|
||||||
|
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
|
||||||
|
let gen = Linear::new(w_gen, Some(b_gen));
|
||||||
|
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
|
||||||
|
let sample_ys = gen.forward(&sample_xs)?;
|
||||||
|
|
||||||
|
// Now use backprop to run a linear regression between samples and get the coefficients back.
|
||||||
|
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
|
||||||
|
let b = Var::new(0f32, &Device::Cpu)?;
|
||||||
|
let sgd = SGD::new(&[&w, &b], 0.004);
|
||||||
|
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
|
||||||
|
for _step in 0..1000 {
|
||||||
|
let ys = lin.forward(&sample_xs)?;
|
||||||
|
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
|
||||||
|
sgd.backward_step(&loss)?;
|
||||||
|
}
|
||||||
|
assert_eq!(w.to_vec2::<f32>()?, &[[2.9983196, 0.99790204]]);
|
||||||
|
assert_eq!(b.to_scalar::<f32>()?, -1.9796902);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
Reference in New Issue
Block a user