Add a repeat penalty to the llama2.c wasm example. (#709)

This commit is contained in:
Laurent Mazare
2023-09-01 20:32:28 +02:00
committed by GitHub
parent 1e5b2cc1d5
commit 2fef14cb14
4 changed files with 26 additions and 39 deletions

View File

@ -11,6 +11,7 @@ license.workspace = true
[dependencies]
candle = { path = "../../candle-core", version = "0.2.1", package = "candle-core" }
candle-nn = { path = "../../candle-nn", version = "0.2.1" }
candle-transformers = { path = "../../candle-transformers", version = "0.2.1" }
num-traits = { workspace = true }
tokenizers = { workspace = true, features = ["unstable_wasm"] }

View File

@ -1,5 +1,6 @@
use candle::{Device, Tensor};
use candle_wasm_example_llama2::worker::{LogitsProcessor, Model as M, ModelData};
use candle_transformers::generation::LogitsProcessor;
use candle_wasm_example_llama2::worker::{Model as M, ModelData};
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
@ -7,14 +8,26 @@ pub struct Model {
inner: M,
logits_processor: LogitsProcessor,
tokens: Vec<u32>,
repeat_penalty: f32,
}
impl Model {
fn process(&mut self, tokens: &[u32]) -> candle::Result<String> {
const REPEAT_LAST_N: usize = 64;
let dev = Device::Cpu;
let input = Tensor::new(tokens, &dev)?.unsqueeze(0)?;
let logits = self.inner.llama.forward(&input, tokens.len())?;
let logits = logits.squeeze(0)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = self.tokens.len().saturating_sub(REPEAT_LAST_N);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
self.tokens.push(next_token);
@ -40,13 +53,19 @@ impl Model {
inner,
logits_processor,
tokens: vec![],
repeat_penalty: 1.,
}),
Err(e) => Err(JsError::new(&e.to_string())),
}
}
#[wasm_bindgen]
pub fn init_with_prompt(&mut self, prompt: String, temp: f64) -> Result<String, JsError> {
pub fn init_with_prompt(
&mut self,
prompt: String,
temp: f64,
repeat_penalty: f32,
) -> Result<String, JsError> {
// First reset the cache.
{
let mut cache = self.inner.cache.kvs.lock().unwrap();
@ -56,6 +75,7 @@ impl Model {
}
let temp = if temp <= 0. { None } else { Some(temp) };
self.logits_processor = LogitsProcessor::new(299792458, temp);
self.repeat_penalty = repeat_penalty;
self.tokens.clear();
let tokens = self
.inner

View File

@ -1,8 +1,8 @@
use crate::model::{Cache, Config, Llama};
use byteorder::{LittleEndian, ReadBytesExt};
use candle::{DType, Device, IndexOp, Result, Shape, Tensor, D};
use candle_nn::{ops::softmax, VarBuilder};
use rand::{distributions::Distribution, SeedableRng};
use candle::{DType, Device, IndexOp, Result, Shape, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use serde::{Deserialize, Serialize};
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;
@ -56,40 +56,6 @@ pub struct Model {
pub tokenizer: Tokenizer,
}
pub struct LogitsProcessor {
rng: rand::rngs::StdRng,
temperature: Option<f64>,
}
impl LogitsProcessor {
pub fn new(seed: u64, temperature: Option<f64>) -> Self {
Self {
rng: rand::rngs::StdRng::seed_from_u64(seed),
temperature,
}
}
pub fn sample(&mut self, logits: &Tensor) -> Result<u32> {
let logits = logits.to_dtype(DType::F32)?;
let next_token = if let Some(temperature) = self.temperature {
let prs = softmax(&(&logits / temperature)?, D::Minus1)?;
let prs: Vec<f32> = prs.to_vec1()?;
let distr =
rand::distributions::WeightedIndex::new(prs).map_err(candle::Error::wrap)?;
distr.sample(&mut self.rng) as u32
} else {
let logits_v: Vec<f32> = logits.to_vec1()?;
logits_v
.iter()
.enumerate()
.max_by(|(_, u), (_, v)| u.total_cmp(v))
.map(|(i, _)| i as u32)
.unwrap()
};
Ok(next_token)
}
}
impl Model {
fn run(
&self,

Binary file not shown.