Add a Dropout layer (#676)

* Add a dropout layer.

* Add an actual layer.
This commit is contained in:
Laurent Mazare
2023-08-30 16:19:28 +01:00
committed by GitHub
parent ad8a62dbf5
commit 3159982a89
2 changed files with 36 additions and 0 deletions

View File

@ -23,6 +23,7 @@ pub use group_norm::{group_norm, GroupNorm};
pub use init::Init;
pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
pub use linear::{linear, linear_no_bias, Linear};
pub use ops::Dropout;
pub use optim::{AdamW, ParamsAdamW, SGD};
pub use rnn::{lstm, LSTM, RNN};
pub use var_builder::VarBuilder;

View File

@ -42,3 +42,38 @@ pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
// TODO: Should we have a specialized op for this?
(xs.neg()?.exp()? + 1.0)?.recip()
}
pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> {
// This implementation is inefficient as it stores the full mask for the backward pass.
// Instead we could just store the seed and have a specialized kernel that would both
// generate the random mask and apply it.
// Another easier optimization would be to be able to generate boolean mask using just a bit of
// entropy per element rather than generating a full float per element.
if !(0. ..1.).contains(&drop_p) {
candle::bail!("dropout probability has to be in [0, 1), got {drop_p}")
}
let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?;
let scale = 1.0 / (1.0 - drop_p as f64);
let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?;
let mask = (rand.ge(&drop_p)? * scale)?.to_dtype(xs.dtype())?;
xs * mask
}
#[derive(Debug)]
pub struct Dropout {
drop_p: f32,
}
impl Dropout {
pub fn new(drop_p: f32) -> Dropout {
Self { drop_p }
}
pub fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
if train {
dropout(xs, self.drop_p)
} else {
Ok(xs.clone())
}
}
}