mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Remove the padding. (#838)
This commit is contained in:
@ -132,48 +132,39 @@ fn main() -> Result<()> {
|
||||
"Do you like pizza?",
|
||||
];
|
||||
let n_sentences = sentences.len();
|
||||
if let Some(pp) = tokenizer.get_padding_mut() {
|
||||
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
|
||||
} else {
|
||||
let pp = tokenizers::PaddingParams {
|
||||
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
||||
..Default::default()
|
||||
let mut all_embeddings = Vec::with_capacity(n_sentences);
|
||||
for sentence in sentences {
|
||||
let tokens = tokenizer
|
||||
.encode(sentence, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let token_ids = Tensor::new(&tokens[..], model.device())?.unsqueeze(0)?;
|
||||
let embeddings = model.forward(&token_ids)?;
|
||||
println!("generated embeddings {:?}", embeddings.shape());
|
||||
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
||||
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
|
||||
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
|
||||
let embeddings = if args.normalize_embeddings {
|
||||
normalize_l2(&embeddings)?
|
||||
} else {
|
||||
embeddings
|
||||
};
|
||||
tokenizer.with_padding(Some(pp));
|
||||
println!("pooled embeddings {:?}", embeddings.shape());
|
||||
all_embeddings.push(embeddings)
|
||||
}
|
||||
let tokens = tokenizer
|
||||
.encode_batch(sentences.to_vec(), true)
|
||||
.map_err(E::msg)?;
|
||||
let token_ids = tokens
|
||||
.iter()
|
||||
.map(|tokens| {
|
||||
let tokens = tokens.get_ids().to_vec();
|
||||
Ok(Tensor::new(tokens.as_slice(), model.device())?)
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let token_ids = Tensor::stack(&token_ids, 0)?;
|
||||
println!("running inference on batch {:?}", token_ids.shape());
|
||||
let embeddings = model.forward(&token_ids)?;
|
||||
println!("generated embeddings {:?}", embeddings.shape());
|
||||
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
||||
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
|
||||
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
|
||||
let embeddings = if args.normalize_embeddings {
|
||||
normalize_l2(&embeddings)?
|
||||
} else {
|
||||
embeddings
|
||||
};
|
||||
println!("pooled embeddings {:?}", embeddings.shape());
|
||||
|
||||
let mut similarities = vec![];
|
||||
for i in 0..n_sentences {
|
||||
let e_i = embeddings.get(i)?;
|
||||
for j in (i + 1)..n_sentences {
|
||||
let e_j = embeddings.get(j)?;
|
||||
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
for (i, e_i) in all_embeddings.iter().enumerate() {
|
||||
for (j, e_j) in all_embeddings
|
||||
.iter()
|
||||
.enumerate()
|
||||
.take(n_sentences)
|
||||
.skip(i + 1)
|
||||
{
|
||||
let sum_ij = (e_i * e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_i2 = (e_i * e_i)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let sum_j2 = (e_j * e_j)?.sum_all()?.to_scalar::<f32>()?;
|
||||
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
|
||||
similarities.push((cosine_similarity, i, j))
|
||||
}
|
||||
|
Reference in New Issue
Block a user