mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Readme updates. (#1134)
This commit is contained in:
15
README.md
15
README.md
@ -130,8 +130,11 @@ And then head over to
|
||||
|
||||
<!--- ANCHOR: useful_libraries --->
|
||||
|
||||
## Useful Libraries
|
||||
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora) provides a LoRA implementation that conforms to the official `peft` implementation.
|
||||
## Useful External Resources
|
||||
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): a
|
||||
very detailed tutorial showing how to convert a PyTorch model to Candle.
|
||||
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): a LoRA implementation
|
||||
that conforms to the official `peft` implementation.
|
||||
|
||||
If you have an addition to this list, please submit a pull request.
|
||||
|
||||
@ -163,12 +166,8 @@ If you have an addition to this list, please submit a pull request.
|
||||
- Stable Diffusion v1.5, v2.1, XL v1.0.
|
||||
- Wurstchen v2.
|
||||
- Computer Vision Models.
|
||||
- DINOv2.
|
||||
- ConvMixer.
|
||||
- EfficientNet.
|
||||
- ResNet-18/34/50/101/152.
|
||||
- yolo-v3.
|
||||
- yolo-v8.
|
||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
|
||||
- yolo-v3, yolo-v8.
|
||||
- Segment-Anything Model (SAM).
|
||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||
- Serverless (on CPU), small and fast deployments.
|
||||
|
20
candle-examples/examples/vit/README.md
Normal file
20
candle-examples/examples/vit/README.md
Normal file
@ -0,0 +1,20 @@
|
||||
# candle-vit
|
||||
|
||||
Vision Transformer (ViT) model implementation following the lines of
|
||||
[vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
|
||||
This uses a classification head trained on the ImageNet dataset and returns the
|
||||
probabilities for the top-5 classes.
|
||||
|
||||
## Running an example
|
||||
|
||||
```
|
||||
$ cargo run --example vit --release -- --image tiger.jpg
|
||||
|
||||
loaded image Tensor[dims 3, 224, 224; f32]
|
||||
model built
|
||||
tiger, Panthera tigris : 100.00%
|
||||
tiger cat : 0.00%
|
||||
jaguar, panther, Panthera onca, Felis onca: 0.00%
|
||||
leopard, Panthera pardus: 0.00%
|
||||
lion, king of beasts, Panthera leo: 0.00%
|
||||
```
|
Reference in New Issue
Block a user