Readme updates. (#1134)

This commit is contained in:
Laurent Mazare
2023-10-20 09:08:39 +01:00
committed by GitHub
parent 55351ef57d
commit 31ca4897bb
2 changed files with 27 additions and 8 deletions

View File

@ -130,8 +130,11 @@ And then head over to
<!--- ANCHOR: useful_libraries --->
## Useful Libraries
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora) provides a LoRA implementation that conforms to the official `peft` implementation.
## Useful External Resources
- [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): a
very detailed tutorial showing how to convert a PyTorch model to Candle.
- [`candle-lora`](https://github.com/EricLBuehler/candle-lora): a LoRA implementation
that conforms to the official `peft` implementation.
If you have an addition to this list, please submit a pull request.
@ -163,12 +166,8 @@ If you have an addition to this list, please submit a pull request.
- Stable Diffusion v1.5, v2.1, XL v1.0.
- Wurstchen v2.
- Computer Vision Models.
- DINOv2.
- ConvMixer.
- EfficientNet.
- ResNet-18/34/50/101/152.
- yolo-v3.
- yolo-v8.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
- Serverless (on CPU), small and fast deployments.

View File

@ -0,0 +1,20 @@
# candle-vit
Vision Transformer (ViT) model implementation following the lines of
[vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
This uses a classification head trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example vit --release -- --image tiger.jpg
loaded image Tensor[dims 3, 224, 224; f32]
model built
tiger, Panthera tigris : 100.00%
tiger cat : 0.00%
jaguar, panther, Panthera onca, Felis onca: 0.00%
leopard, Panthera pardus: 0.00%
lion, king of beasts, Panthera leo: 0.00%
```