mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Add llama2.c as an example. (#229)
* Start adding llama2.c. * Model loading. * Add the llama-v2 model. * Start converting the weights. * Rotary embedding tweaks. * Get the model to generate some tokens.
This commit is contained in:
240
candle-examples/examples/llama2-c/main.rs
Normal file
240
candle-examples/examples/llama2-c/main.rs
Normal file
@ -0,0 +1,240 @@
|
||||
// https://github.com/karpathy/llama2.c
|
||||
#![allow(dead_code)]
|
||||
#![allow(unused)]
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
mod model;
|
||||
use clap::Parser;
|
||||
|
||||
use anyhow::Result;
|
||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
use model::{Config, Llama};
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
token_embedding_table: Tensor, // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
||||
rms_ffn_weight: Tensor, // (layer, dim)
|
||||
// weights for matmuls
|
||||
wq: Tensor, // (layer, dim, dim)
|
||||
wk: Tensor, // (layer, dim, dim)
|
||||
wv: Tensor, // (layer, dim, dim)
|
||||
wo: Tensor, // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
w1: Tensor, // (layer, hidden_dim, dim)
|
||||
w2: Tensor, // (layer, dim, hidden_dim)
|
||||
w3: Tensor, // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
rms_final_weight: Tensor, // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||
let mut buf = [0u8; 4];
|
||||
r.read_exact(&mut buf)?;
|
||||
Ok(i32::from_le_bytes(buf))
|
||||
}
|
||||
|
||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||
let dim = Self::read_i32(r)? as usize;
|
||||
let hidden_dim = Self::read_i32(r)? as usize;
|
||||
let n_layers = Self::read_i32(r)? as usize;
|
||||
let n_heads = Self::read_i32(r)? as usize;
|
||||
let n_kv_heads = Self::read_i32(r)? as usize;
|
||||
let vocab_size = Self::read_i32(r)? as usize;
|
||||
let seq_len = Self::read_i32(r)? as usize;
|
||||
Ok(Self {
|
||||
dim,
|
||||
hidden_dim,
|
||||
n_layers,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
vocab_size,
|
||||
seq_len,
|
||||
norm_eps: 1e-5,
|
||||
})
|
||||
}
|
||||
|
||||
fn head_size(&self) -> usize {
|
||||
self.dim / self.n_heads
|
||||
}
|
||||
}
|
||||
|
||||
impl TransformerWeights {
|
||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||
r: &mut R,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let mut data_t = vec![0f32; shape.elem_count()];
|
||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
|
||||
let head_size = c.head_size();
|
||||
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
Ok(Self {
|
||||
token_embedding_table,
|
||||
rms_att_weight,
|
||||
wq,
|
||||
wk,
|
||||
wv,
|
||||
wo,
|
||||
rms_ffn_weight,
|
||||
w1,
|
||||
w2,
|
||||
w3,
|
||||
rms_final_weight,
|
||||
freq_cis_real,
|
||||
freq_cis_imag,
|
||||
})
|
||||
}
|
||||
|
||||
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
||||
let mut ws = std::collections::HashMap::new();
|
||||
let mut insert = |name: &str, t: Tensor| {
|
||||
ws.insert(name.to_string(), t);
|
||||
};
|
||||
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
||||
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
||||
insert(
|
||||
"model.embed_tokens.weight",
|
||||
self.token_embedding_table.clone(),
|
||||
);
|
||||
insert("lm_head.weight", self.token_embedding_table.clone());
|
||||
insert("model.norm.weight", self.rms_final_weight.clone());
|
||||
for layer in 0..cfg.n_layers {
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
||||
self.wq.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
||||
self.wk.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
||||
self.wv.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
||||
self.wo.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
||||
self.w1.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
||||
self.w2.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
||||
self.w3.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.input_layernorm.weight"),
|
||||
self.rms_att_weight.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
||||
self.rms_ffn_weight.i(layer)?,
|
||||
);
|
||||
}
|
||||
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
||||
Ok(vb)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Config file in binary format.
|
||||
#[arg(long)]
|
||||
config: String,
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
|
||||
println!("{t}");
|
||||
let mut file = std::fs::File::open(&args.config)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
println!("config: {config:?}");
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, &config)?;
|
||||
|
||||
println!("starting the inference loop");
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
||||
let mut new_tokens: Vec<u32> = vec![];
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut index_pos = 0;
|
||||
let mut tokens = vec![1u32];
|
||||
|
||||
for index in 0..config.seq_len - 10 {
|
||||
let start_gen = std::time::Instant::now();
|
||||
let context_size = if cache.use_kv_cache && index > 0 {
|
||||
1
|
||||
} else {
|
||||
tokens.len()
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, index_pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
index_pos += ctxt.len();
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
new_tokens.push(next_token);
|
||||
println!("> {:?}", start_gen.elapsed());
|
||||
println!(
|
||||
"{} token: {} '{}'",
|
||||
index + 1,
|
||||
next_token,
|
||||
0,
|
||||
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
|
||||
);
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
||||
config.seq_len,
|
||||
config.seq_len as f64 / dt.as_secs_f64(),
|
||||
0,
|
||||
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
||||
);
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user