Add llama2.c as an example. (#229)

* Start adding llama2.c.

* Model loading.

* Add the llama-v2 model.

* Start converting the weights.

* Rotary embedding tweaks.

* Get the model to generate some tokens.
This commit is contained in:
Laurent Mazare
2023-07-24 09:13:50 +01:00
committed by GitHub
parent b6f7dfb682
commit 35b65fed88
3 changed files with 559 additions and 0 deletions

View File

@ -0,0 +1,240 @@
// https://github.com/karpathy/llama2.c
#![allow(dead_code)]
#![allow(unused)]
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
mod model;
use clap::Parser;
use anyhow::Result;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
use candle_nn::{Embedding, Linear, VarBuilder};
use candle_transformers::generation::LogitsProcessor;
use model::{Config, Llama};
struct TransformerWeights {
// token embedding table
token_embedding_table: Tensor, // (vocab_size, dim)
// weights for rmsnorms
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
rms_ffn_weight: Tensor, // (layer, dim)
// weights for matmuls
wq: Tensor, // (layer, dim, dim)
wk: Tensor, // (layer, dim, dim)
wv: Tensor, // (layer, dim, dim)
wo: Tensor, // (layer, dim, dim)
// weights for ffn
w1: Tensor, // (layer, hidden_dim, dim)
w2: Tensor, // (layer, dim, hidden_dim)
w3: Tensor, // (layer, hidden_dim, dim)
// final rmsnorm
rms_final_weight: Tensor, // (dim,)
// freq_cis for RoPE relatively positional embeddings
freq_cis_real: Tensor, // (seq_len, head_size/2)
freq_cis_imag: Tensor, // (seq_len, head_size/2)
}
impl Config {
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
let mut buf = [0u8; 4];
r.read_exact(&mut buf)?;
Ok(i32::from_le_bytes(buf))
}
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
let dim = Self::read_i32(r)? as usize;
let hidden_dim = Self::read_i32(r)? as usize;
let n_layers = Self::read_i32(r)? as usize;
let n_heads = Self::read_i32(r)? as usize;
let n_kv_heads = Self::read_i32(r)? as usize;
let vocab_size = Self::read_i32(r)? as usize;
let seq_len = Self::read_i32(r)? as usize;
Ok(Self {
dim,
hidden_dim,
n_layers,
n_heads,
n_kv_heads,
vocab_size,
seq_len,
norm_eps: 1e-5,
})
}
fn head_size(&self) -> usize {
self.dim / self.n_heads
}
}
impl TransformerWeights {
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
r: &mut R,
shape: S,
dev: &Device,
) -> Result<Tensor> {
let shape = shape.into();
let mut data_t = vec![0f32; shape.elem_count()];
r.read_f32_into::<LittleEndian>(&mut data_t)?;
let tensor = Tensor::from_vec(data_t, shape, dev)?;
Ok(tensor)
}
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
let head_size = c.head_size();
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
Ok(Self {
token_embedding_table,
rms_att_weight,
wq,
wk,
wv,
wo,
rms_ffn_weight,
w1,
w2,
w3,
rms_final_weight,
freq_cis_real,
freq_cis_imag,
})
}
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
let mut ws = std::collections::HashMap::new();
let mut insert = |name: &str, t: Tensor| {
ws.insert(name.to_string(), t);
};
insert("rot.freq_cis_real", self.freq_cis_real.clone());
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
insert(
"model.embed_tokens.weight",
self.token_embedding_table.clone(),
);
insert("lm_head.weight", self.token_embedding_table.clone());
insert("model.norm.weight", self.rms_final_weight.clone());
for layer in 0..cfg.n_layers {
ws.insert(
format!("model.layers.{layer}.self_attn.q_proj.weight"),
self.wq.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.k_proj.weight"),
self.wk.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.v_proj.weight"),
self.wv.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.o_proj.weight"),
self.wo.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.gate_proj.weight"),
self.w1.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.down_proj.weight"),
self.w2.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.up_proj.weight"),
self.w3.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.input_layernorm.weight"),
self.rms_att_weight.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.post_attention_layernorm.weight"),
self.rms_ffn_weight.i(layer)?,
);
}
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
Ok(vb)
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Config file in binary format.
#[arg(long)]
config: String,
}
fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
println!("{t}");
let mut file = std::fs::File::open(&args.config)?;
let config = Config::from_reader(&mut file)?;
println!("config: {config:?}");
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, &config)?;
println!("starting the inference loop");
let mut logits_processor = LogitsProcessor::new(299792458, None);
let mut new_tokens: Vec<u32> = vec![];
let start_gen = std::time::Instant::now();
let mut index_pos = 0;
let mut tokens = vec![1u32];
for index in 0..config.seq_len - 10 {
let start_gen = std::time::Instant::now();
let context_size = if cache.use_kv_cache && index > 0 {
1
} else {
tokens.len()
};
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
let logits = model.forward(&input, index_pos)?;
let logits = logits.squeeze(0)?;
index_pos += ctxt.len();
let next_token = logits_processor.sample(&logits)?;
tokens.push(next_token);
new_tokens.push(next_token);
println!("> {:?}", start_gen.elapsed());
println!(
"{} token: {} '{}'",
index + 1,
next_token,
0,
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
);
}
let dt = start_gen.elapsed();
println!(
"{} tokens generated ({} token/s)\n----\n{}\n----",
config.seq_len,
config.seq_len as f64 / dt.as_secs_f64(),
0,
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
);
Ok(())
}