mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Add llama2.c as an example. (#229)
* Start adding llama2.c. * Model loading. * Add the llama-v2 model. * Start converting the weights. * Rotary embedding tweaks. * Get the model to generate some tokens.
This commit is contained in:
@ -21,6 +21,7 @@ intel-mkl-src = { workspace = true, optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { workspace = true }
|
||||
byteorder = { workspace = true }
|
||||
hf-hub = { workspace = true}
|
||||
clap = { workspace = true }
|
||||
rand = { workspace = true }
|
||||
|
240
candle-examples/examples/llama2-c/main.rs
Normal file
240
candle-examples/examples/llama2-c/main.rs
Normal file
@ -0,0 +1,240 @@
|
||||
// https://github.com/karpathy/llama2.c
|
||||
#![allow(dead_code)]
|
||||
#![allow(unused)]
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
mod model;
|
||||
use clap::Parser;
|
||||
|
||||
use anyhow::Result;
|
||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
use model::{Config, Llama};
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
token_embedding_table: Tensor, // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
||||
rms_ffn_weight: Tensor, // (layer, dim)
|
||||
// weights for matmuls
|
||||
wq: Tensor, // (layer, dim, dim)
|
||||
wk: Tensor, // (layer, dim, dim)
|
||||
wv: Tensor, // (layer, dim, dim)
|
||||
wo: Tensor, // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
w1: Tensor, // (layer, hidden_dim, dim)
|
||||
w2: Tensor, // (layer, dim, hidden_dim)
|
||||
w3: Tensor, // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
rms_final_weight: Tensor, // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||
let mut buf = [0u8; 4];
|
||||
r.read_exact(&mut buf)?;
|
||||
Ok(i32::from_le_bytes(buf))
|
||||
}
|
||||
|
||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||
let dim = Self::read_i32(r)? as usize;
|
||||
let hidden_dim = Self::read_i32(r)? as usize;
|
||||
let n_layers = Self::read_i32(r)? as usize;
|
||||
let n_heads = Self::read_i32(r)? as usize;
|
||||
let n_kv_heads = Self::read_i32(r)? as usize;
|
||||
let vocab_size = Self::read_i32(r)? as usize;
|
||||
let seq_len = Self::read_i32(r)? as usize;
|
||||
Ok(Self {
|
||||
dim,
|
||||
hidden_dim,
|
||||
n_layers,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
vocab_size,
|
||||
seq_len,
|
||||
norm_eps: 1e-5,
|
||||
})
|
||||
}
|
||||
|
||||
fn head_size(&self) -> usize {
|
||||
self.dim / self.n_heads
|
||||
}
|
||||
}
|
||||
|
||||
impl TransformerWeights {
|
||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||
r: &mut R,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let mut data_t = vec![0f32; shape.elem_count()];
|
||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
|
||||
let head_size = c.head_size();
|
||||
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
Ok(Self {
|
||||
token_embedding_table,
|
||||
rms_att_weight,
|
||||
wq,
|
||||
wk,
|
||||
wv,
|
||||
wo,
|
||||
rms_ffn_weight,
|
||||
w1,
|
||||
w2,
|
||||
w3,
|
||||
rms_final_weight,
|
||||
freq_cis_real,
|
||||
freq_cis_imag,
|
||||
})
|
||||
}
|
||||
|
||||
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
||||
let mut ws = std::collections::HashMap::new();
|
||||
let mut insert = |name: &str, t: Tensor| {
|
||||
ws.insert(name.to_string(), t);
|
||||
};
|
||||
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
||||
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
||||
insert(
|
||||
"model.embed_tokens.weight",
|
||||
self.token_embedding_table.clone(),
|
||||
);
|
||||
insert("lm_head.weight", self.token_embedding_table.clone());
|
||||
insert("model.norm.weight", self.rms_final_weight.clone());
|
||||
for layer in 0..cfg.n_layers {
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
||||
self.wq.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
||||
self.wk.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
||||
self.wv.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
||||
self.wo.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
||||
self.w1.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
||||
self.w2.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
||||
self.w3.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.input_layernorm.weight"),
|
||||
self.rms_att_weight.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
||||
self.rms_ffn_weight.i(layer)?,
|
||||
);
|
||||
}
|
||||
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
||||
Ok(vb)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Config file in binary format.
|
||||
#[arg(long)]
|
||||
config: String,
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
|
||||
println!("{t}");
|
||||
let mut file = std::fs::File::open(&args.config)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
println!("config: {config:?}");
|
||||
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
|
||||
let vb = weights.var_builder(&config, &device)?;
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, &config)?;
|
||||
|
||||
println!("starting the inference loop");
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
||||
let mut new_tokens: Vec<u32> = vec![];
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut index_pos = 0;
|
||||
let mut tokens = vec![1u32];
|
||||
|
||||
for index in 0..config.seq_len - 10 {
|
||||
let start_gen = std::time::Instant::now();
|
||||
let context_size = if cache.use_kv_cache && index > 0 {
|
||||
1
|
||||
} else {
|
||||
tokens.len()
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, index_pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
index_pos += ctxt.len();
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
new_tokens.push(next_token);
|
||||
println!("> {:?}", start_gen.elapsed());
|
||||
println!(
|
||||
"{} token: {} '{}'",
|
||||
index + 1,
|
||||
next_token,
|
||||
0,
|
||||
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
|
||||
);
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
||||
config.seq_len,
|
||||
config.seq_len as f64 / dt.as_secs_f64(),
|
||||
0,
|
||||
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
||||
);
|
||||
Ok(())
|
||||
}
|
318
candle-examples/examples/llama2-c/model.rs
Normal file
318
candle-examples/examples/llama2-c/model.rs
Normal file
@ -0,0 +1,318 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Config {
|
||||
pub dim: usize, // transformer dimension
|
||||
pub hidden_dim: usize, // for ffn layers
|
||||
pub n_layers: usize, // number of layers
|
||||
pub n_heads: usize, // number of query heads
|
||||
pub n_kv_heads: usize, // number of key/value heads (can be < query heads because of multiquery)
|
||||
pub vocab_size: usize, // vocabulary size, usually 256 (byte-level)
|
||||
pub seq_len: usize, // max sequence length
|
||||
pub norm_eps: f64,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Cache {
|
||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||
pub use_kv_cache: bool,
|
||||
#[allow(clippy::type_complexity)]
|
||||
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
|
||||
let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
|
||||
Ok(Self {
|
||||
masks: Arc::new(Mutex::new(HashMap::new())),
|
||||
use_kv_cache,
|
||||
kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])),
|
||||
cos: freq_cis_real,
|
||||
sin: freq_cis_imag,
|
||||
device: vb.device().clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&self, t: usize) -> Result<Tensor> {
|
||||
let mut masks = self.masks.lock().unwrap();
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
// TODO: If we support bool or u8 tensors, this would be better.
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||
xs / (xs.neg()?.exp()? + 1.0)?
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
Ok(Linear::new(weight, None))
|
||||
}
|
||||
|
||||
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?;
|
||||
Ok(Embedding::new(embeddings, cfg.dim))
|
||||
}
|
||||
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
eps: f64,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let scale = vb.get(size, "weight")?;
|
||||
Ok(Self { scale, eps })
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let (b_sz, seq_len, hidden_size) = x.dims3()?;
|
||||
let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
|
||||
let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
|
||||
let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?;
|
||||
let size = self.scale.dims1()?;
|
||||
let scale = self
|
||||
.scale
|
||||
.to_dtype(DType::F32)?
|
||||
.broadcast_as((b_sz, seq_len, size))?;
|
||||
let x = (scale * x_normed)?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
struct CausalSelfAttention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
n_head: usize,
|
||||
n_key_value_head: usize,
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
max_seq_len: usize,
|
||||
}
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (b_sz, _, seq_len, n_embd) = x.dims4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
|
||||
let x0 = x.narrow(D::Minus1, 0, n_embd / 2)?;
|
||||
let x1 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
|
||||
let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
|
||||
let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
|
||||
let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?;
|
||||
Ok(rope)
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let q = self.q_proj.forward(x)?;
|
||||
let k = self.k_proj.forward(x)?;
|
||||
let v = self.v_proj.forward(x)?;
|
||||
|
||||
let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?;
|
||||
let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
|
||||
let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||
let mut k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
|
||||
if self.cache.use_kv_cache {
|
||||
let mut cache = self.cache.kvs.lock().unwrap();
|
||||
if let Some((cache_k, cache_v)) = &cache[block_idx] {
|
||||
k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?;
|
||||
v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?;
|
||||
}
|
||||
cache[block_idx] = Some((k.clone(), v.clone()))
|
||||
}
|
||||
|
||||
let k = self.repeat_kv(k)?;
|
||||
let v = self.repeat_kv(v)?;
|
||||
|
||||
let q = q.transpose(1, 2)?.contiguous()?;
|
||||
let k = k.transpose(1, 2)?.contiguous()?;
|
||||
let v = v.transpose(1, 2)?.contiguous()?;
|
||||
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||
let att = att.softmax(D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = att.matmul(&v.contiguous()?)?;
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_head / self.n_key_value_head;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?;
|
||||
let x = x
|
||||
.unsqueeze(3)?
|
||||
.expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))?
|
||||
.reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let size_in = cfg.dim;
|
||||
let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads;
|
||||
let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads;
|
||||
let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
|
||||
let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
n_head: cfg.n_heads,
|
||||
n_key_value_head: cfg.n_kv_heads,
|
||||
head_dim: cfg.dim / cfg.n_heads,
|
||||
cache: cache.clone(),
|
||||
max_seq_len: cfg.seq_len,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||
let m = mask.where_cond(&on_true, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
struct Mlp {
|
||||
c_fc1: Linear,
|
||||
c_fc2: Linear,
|
||||
c_proj: Linear,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
|
||||
Self {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let h_size = cfg.dim;
|
||||
let i_size = cfg.hidden_dim;
|
||||
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
|
||||
let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
|
||||
let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
|
||||
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
||||
}
|
||||
}
|
||||
|
||||
struct Block {
|
||||
rms_1: RmsNorm,
|
||||
attn: CausalSelfAttention,
|
||||
rms_2: RmsNorm,
|
||||
mlp: Mlp,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
|
||||
Self {
|
||||
rms_1,
|
||||
attn,
|
||||
rms_2,
|
||||
mlp,
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let residual = x;
|
||||
let x = self.rms_1.forward(x)?;
|
||||
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
|
||||
let residual = &x;
|
||||
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
|
||||
Ok(x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
|
||||
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
|
||||
let input_layernorm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?;
|
||||
let post_attention_layernorm =
|
||||
RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?;
|
||||
Ok(Self::new(
|
||||
input_layernorm,
|
||||
attn,
|
||||
post_attention_layernorm,
|
||||
mlp,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Llama {
|
||||
wte: Embedding,
|
||||
blocks: Vec<Block>,
|
||||
ln_f: RmsNorm,
|
||||
lm_head: Linear,
|
||||
}
|
||||
|
||||
impl Llama {
|
||||
fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
|
||||
Self {
|
||||
wte,
|
||||
blocks,
|
||||
ln_f,
|
||||
lm_head,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = x.dims2()?;
|
||||
let mut x = self.wte.forward(x)?;
|
||||
for (block_idx, block) in self.blocks.iter().enumerate() {
|
||||
x = block.forward(&x, index_pos, block_idx)?;
|
||||
}
|
||||
let x = self.ln_f.forward(&x)?;
|
||||
let x = x.i((.., seq_len - 1, ..))?;
|
||||
let logits = self.lm_head.forward(&x)?;
|
||||
logits.to_dtype(DType::F32)
|
||||
}
|
||||
|
||||
pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
|
||||
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
|
||||
let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let norm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
|
||||
let blocks: Vec<_> = (0..cfg.n_layers)
|
||||
.map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
|
||||
.collect();
|
||||
Ok(Self::new(wte, blocks, norm, lm_head))
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user