mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00
Qwen3 quantized implementation (#2939)
* fixed quantized_phi3 implementation * quantized_qwen3 implementation * Update quantized_phi3.rs * Update quantized_phi3.rs * add quantized_qwen3 example * Clippy fixes. * Cleanup. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
This commit is contained in:
11
candle-examples/examples/quantized-qwen3/README.md
Normal file
11
candle-examples/examples/quantized-qwen3/README.md
Normal file
@ -0,0 +1,11 @@
|
||||
# candle-quantized-qwen3
|
||||
|
||||
[Qwen3]((https://qwenlm.github.io/blog/qwen3/)) is an upgraded version of Qwen2.5, released by Alibaba Cloud.
|
||||
|
||||
## Running the example
|
||||
|
||||
```bash
|
||||
cargo run --example quantized-qwen3 --release -- --prompt "Write a function to count prime numbers up to N."
|
||||
```
|
||||
|
||||
0.6b is used by default, 1.7b, 4b, 8b, 14b, and 32b models are available via `--model` argument.
|
314
candle-examples/examples/quantized-qwen3/main.rs
Normal file
314
candle-examples/examples/quantized-qwen3/main.rs
Normal file
@ -0,0 +1,314 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use clap::{Parser, ValueEnum};
|
||||
use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use candle::quantized::gguf_file;
|
||||
use candle::Tensor;
|
||||
use candle_transformers::generation::{LogitsProcessor, Sampling};
|
||||
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_transformers::models::quantized_qwen3::ModelWeights as Qwen3;
|
||||
|
||||
const DEFAULT_PROMPT: &str = "Write a Rust function to calculate the factorial of a given number.";
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "0.6b")]
|
||||
W3_0_6b,
|
||||
#[value(name = "1.7b")]
|
||||
W3_1_7b,
|
||||
#[value(name = "4b")]
|
||||
W3_4b,
|
||||
#[value(name = "8b")]
|
||||
W3_8b,
|
||||
#[value(name = "14b")]
|
||||
W3_14b,
|
||||
#[value(name = "32b")]
|
||||
W3_32b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
|
||||
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
|
||||
/// is preserved.
|
||||
#[arg(long)]
|
||||
prompt: Option<String>,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(short = 'n', long, default_value_t = 1000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// The tokenizer config in json format.
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
/// The temperature used to generate samples, use 0 for greedy sampling.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Process prompt elements separately.
|
||||
#[arg(long)]
|
||||
split_prompt: bool,
|
||||
|
||||
/// Run on CPU rather than GPU even if a GPU is available.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
/// The model size to use.
|
||||
#[arg(long, default_value = "0.6b")]
|
||||
which: Which,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
||||
let tokenizer_path = match &self.tokenizer {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let repo = match self.which {
|
||||
Which::W3_0_6b => "Qwen/Qwen3-0.6B",
|
||||
Which::W3_1_7b => "Qwen/Qwen3-1.7B",
|
||||
Which::W3_4b => "Qwen/Qwen3-4B",
|
||||
Which::W3_8b => "Qwen/Qwen3-8B",
|
||||
Which::W3_14b => "Qwen/Qwen3-14B",
|
||||
Which::W3_32b => "Qwen/Qwen3-32B",
|
||||
};
|
||||
let api = api.model(repo.to_string());
|
||||
api.get("tokenizer.json")?
|
||||
}
|
||||
};
|
||||
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
||||
}
|
||||
|
||||
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
||||
let model_path = match &self.model {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let (repo, filename, revision) = match self.which {
|
||||
Which::W3_0_6b => ("unsloth/Qwen3-0.6B-GGUF", "Qwen3-0.6B-Q4_K_M.gguf", "main"),
|
||||
Which::W3_1_7b => ("unsloth/Qwen3-1.7B-GGUF", "Qwen3-1.7B-Q4_K_M.gguf", "main"),
|
||||
Which::W3_4b => ("unsloth/Qwen3-4B-GGUF", "Qwen3-4B-Q4_K_M.gguf", "main"),
|
||||
Which::W3_8b => ("unsloth/Qwen3-8B-GGUF", "Qwen3-8B-Q4_K_M.gguf", "main"),
|
||||
Which::W3_14b => ("unsloth/Qwen3-14B-GGUF", "Qwen3-14B-Q4_K_M.gguf", "main"),
|
||||
Which::W3_32b => ("unsloth/Qwen3-32B-GGUF", "Qwen3-32B-Q4_K_M.gguf", "main"),
|
||||
};
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
api.repo(hf_hub::Repo::with_revision(
|
||||
repo.to_string(),
|
||||
hf_hub::RepoType::Model,
|
||||
revision.to_string(),
|
||||
))
|
||||
.get(filename)?
|
||||
}
|
||||
};
|
||||
Ok(model_path)
|
||||
}
|
||||
}
|
||||
|
||||
fn format_size(size_in_bytes: usize) -> String {
|
||||
if size_in_bytes < 1_000 {
|
||||
format!("{}B", size_in_bytes)
|
||||
} else if size_in_bytes < 1_000_000 {
|
||||
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
|
||||
} else if size_in_bytes < 1_000_000_000 {
|
||||
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
|
||||
} else {
|
||||
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature, args.repeat_penalty, args.repeat_last_n
|
||||
);
|
||||
|
||||
let model_path = args.model()?;
|
||||
let mut file = std::fs::File::open(&model_path)?;
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
let mut model = {
|
||||
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
|
||||
let mut total_size_in_bytes = 0;
|
||||
for (_, tensor) in model.tensor_infos.iter() {
|
||||
let elem_count = tensor.shape.elem_count();
|
||||
total_size_in_bytes +=
|
||||
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
|
||||
}
|
||||
println!(
|
||||
"loaded {:?} tensors ({}) in {:.2}s",
|
||||
model.tensor_infos.len(),
|
||||
&format_size(total_size_in_bytes),
|
||||
start.elapsed().as_secs_f32(),
|
||||
);
|
||||
Qwen3::from_gguf(model, &mut file, &device)?
|
||||
};
|
||||
println!("model built");
|
||||
|
||||
let tokenizer = args.tokenizer()?;
|
||||
let mut tos = TokenOutputStream::new(tokenizer);
|
||||
let prompt_str = args
|
||||
.prompt
|
||||
.clone()
|
||||
.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
|
||||
|
||||
let prompt_str = format!("<|im_start|>user\n{prompt_str}<|im_end|>\n<|im_start|>assistant\n");
|
||||
print!("formatted prompt: {}", &prompt_str);
|
||||
|
||||
let tokens = tos
|
||||
.tokenizer()
|
||||
.encode(prompt_str, true)
|
||||
.map_err(anyhow::Error::msg)?;
|
||||
|
||||
let tokens = tokens.get_ids();
|
||||
|
||||
let to_sample = args.sample_len.saturating_sub(1);
|
||||
|
||||
let mut all_tokens = vec![];
|
||||
|
||||
let mut logits_processor = {
|
||||
let temperature = args.temperature;
|
||||
let sampling = if temperature <= 0. {
|
||||
Sampling::ArgMax
|
||||
} else {
|
||||
match (args.top_k, args.top_p) {
|
||||
(None, None) => Sampling::All { temperature },
|
||||
(Some(k), None) => Sampling::TopK { k, temperature },
|
||||
(None, Some(p)) => Sampling::TopP { p, temperature },
|
||||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
|
||||
}
|
||||
};
|
||||
LogitsProcessor::from_sampling(args.seed, sampling)
|
||||
};
|
||||
|
||||
let start_prompt_processing = std::time::Instant::now();
|
||||
|
||||
let mut next_token = if !args.split_prompt {
|
||||
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, 0)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
logits_processor.sample(&logits)?
|
||||
} else {
|
||||
let mut next_token = 0;
|
||||
for (pos, token) in tokens.iter().enumerate() {
|
||||
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
next_token = logits_processor.sample(&logits)?
|
||||
}
|
||||
next_token
|
||||
};
|
||||
|
||||
let prompt_dt = start_prompt_processing.elapsed();
|
||||
|
||||
all_tokens.push(next_token);
|
||||
|
||||
if let Some(t) = tos.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let eos_token = *tos.tokenizer().get_vocab(true).get("<|im_end|>").unwrap();
|
||||
|
||||
let start_post_prompt = std::time::Instant::now();
|
||||
|
||||
let mut sampled = 0;
|
||||
for index in 0..to_sample {
|
||||
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, tokens.len() + index)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
args.repeat_penalty,
|
||||
&all_tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
next_token = logits_processor.sample(&logits)?;
|
||||
all_tokens.push(next_token);
|
||||
if let Some(t) = tos.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
sampled += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
};
|
||||
}
|
||||
|
||||
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
|
||||
std::io::stdout().flush()?;
|
||||
let dt = start_post_prompt.elapsed();
|
||||
println!(
|
||||
"\n\n{:4} prompt tokens processed: {:.2} token/s",
|
||||
tokens.len(),
|
||||
tokens.len() as f64 / prompt_dt.as_secs_f64(),
|
||||
);
|
||||
println!(
|
||||
"{sampled:4} tokens generated: {:.2} token/s",
|
||||
sampled as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
@ -90,6 +90,7 @@ pub mod quantized_mpt;
|
||||
pub mod quantized_phi;
|
||||
pub mod quantized_phi3;
|
||||
pub mod quantized_qwen2;
|
||||
pub mod quantized_qwen3;
|
||||
pub mod quantized_recurrent_gemma;
|
||||
pub mod quantized_rwkv_v5;
|
||||
pub mod quantized_rwkv_v6;
|
||||
|
428
candle-transformers/src/models/quantized_qwen3.rs
Normal file
428
candle-transformers/src/models/quantized_qwen3.rs
Normal file
@ -0,0 +1,428 @@
|
||||
//! Qwen3 implementation with quantization support.
|
||||
//!
|
||||
//! Based on the Qwen3 architecture and implemented with quantized weights
|
||||
//! for reduced memory usage and faster inference on compatible hardware.
|
||||
//!
|
||||
//! References:
|
||||
//! - [Qwen3 Models](https://huggingface.co/Qwen/Qwen3-0.6B) (architecture based on official implementations)
|
||||
//!
|
||||
use super::with_tracing::QMatMul;
|
||||
use crate::{quantized_nn::RmsNorm, utils::repeat_kv};
|
||||
use candle::quantized::{gguf_file, QTensor};
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_nn::{kv_cache::KvCache, Activation, Embedding, Module};
|
||||
use std::io::{Read, Seek};
|
||||
use std::sync::Arc;
|
||||
|
||||
struct Gguf<R: Read + Seek> {
|
||||
ct: gguf_file::Content,
|
||||
reader: R,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<R: Read + Seek> Gguf<R> {
|
||||
fn new(ct: gguf_file::Content, reader: R, device: Device) -> Self {
|
||||
Self { ct, reader, device }
|
||||
}
|
||||
|
||||
fn qmatmul(&mut self, name: &str) -> Result<QMatMul> {
|
||||
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
|
||||
QMatMul::from_weights(ws.into())
|
||||
}
|
||||
|
||||
fn rms_norm(&mut self, name: &str, eps: f64) -> Result<RmsNorm> {
|
||||
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
|
||||
RmsNorm::from_qtensor(ws, eps)
|
||||
}
|
||||
|
||||
fn metadata(&self) -> &std::collections::HashMap<String, gguf_file::Value> {
|
||||
&self.ct.metadata
|
||||
}
|
||||
|
||||
fn tensor(&mut self, name: &str) -> Result<QTensor> {
|
||||
self.ct.tensor(&mut self.reader, name, &self.device)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct MlpWeights {
|
||||
gate_proj: QMatMul,
|
||||
up_proj: QMatMul,
|
||||
down_proj: QMatMul,
|
||||
act_fn: Activation,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl MlpWeights {
|
||||
fn new<R: Read + Seek>(gg: &mut Gguf<R>, prefix: &str) -> Result<Self> {
|
||||
let gate_proj = gg.qmatmul(&format!("{prefix}.ffn_gate.weight"))?;
|
||||
let up_proj = gg.qmatmul(&format!("{prefix}.ffn_up.weight"))?;
|
||||
let down_proj = gg.qmatmul(&format!("{prefix}.ffn_down.weight"))?;
|
||||
let act_fn = Activation::Silu;
|
||||
let span = tracing::span!(tracing::Level::TRACE, "mlp");
|
||||
Ok(Self {
|
||||
gate_proj,
|
||||
up_proj,
|
||||
down_proj,
|
||||
act_fn,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for MlpWeights {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let gate = self.gate_proj.forward(x)?.apply(&self.act_fn)?;
|
||||
let up = self.up_proj.forward(x)?;
|
||||
let gated = (gate * up)?;
|
||||
self.down_proj.forward(&gated)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(
|
||||
dtype: DType,
|
||||
head_dim: usize,
|
||||
max_position_embeddings: usize,
|
||||
rope_theta: f64,
|
||||
dev: &Device,
|
||||
) -> Result<Self> {
|
||||
let dim = head_dim;
|
||||
let max_seq_len = max_position_embeddings;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||
.to_dtype(dtype)?
|
||||
.reshape((max_seq_len, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
/// Apply RoPE (q, k shape: B x H x L x D)
|
||||
fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
|
||||
let (_, _, seq_len, _) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
|
||||
let sin = self.sin.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
|
||||
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct AttentionWeights {
|
||||
q_proj: QMatMul,
|
||||
k_proj: QMatMul,
|
||||
v_proj: QMatMul,
|
||||
o_proj: QMatMul,
|
||||
q_norm: RmsNorm,
|
||||
k_norm: RmsNorm,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
head_dim: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
kv_cache: KvCache,
|
||||
span_attn: tracing::Span,
|
||||
}
|
||||
|
||||
impl AttentionWeights {
|
||||
fn new<R: Read + Seek>(
|
||||
gg: &mut Gguf<R>,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
head_dim: usize,
|
||||
rms_norm_eps: f64,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
prefix: &str,
|
||||
) -> Result<Self> {
|
||||
let num_kv_groups = num_heads / num_kv_heads;
|
||||
|
||||
let q_proj = gg.qmatmul(&format!("{prefix}.attn_q.weight"))?;
|
||||
let k_proj = gg.qmatmul(&format!("{prefix}.attn_k.weight"))?;
|
||||
let v_proj = gg.qmatmul(&format!("{prefix}.attn_v.weight"))?;
|
||||
let o_proj = gg.qmatmul(&format!("{prefix}.attn_output.weight"))?;
|
||||
|
||||
let q_norm = gg.rms_norm(&format!("{prefix}.attn_q_norm.weight"), rms_norm_eps)?;
|
||||
let k_norm = gg.rms_norm(&format!("{prefix}.attn_k_norm.weight"), rms_norm_eps)?;
|
||||
|
||||
let max_position_embeddings = gg
|
||||
.metadata()
|
||||
.get("qwen3.context_length")
|
||||
.and_then(|v| v.to_u32().ok())
|
||||
.unwrap_or(4096) as usize;
|
||||
let kv_cache = KvCache::new(2, max_position_embeddings);
|
||||
|
||||
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
q_norm,
|
||||
k_norm,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
num_kv_groups,
|
||||
head_dim,
|
||||
rotary_emb,
|
||||
kv_cache,
|
||||
span_attn,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&mut self, x: &Tensor, attn_mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_attn.enter();
|
||||
let (b, l, _) = x.dims3()?;
|
||||
|
||||
let q = self.q_proj.forward(x)?;
|
||||
let k = self.k_proj.forward(x)?;
|
||||
let v = self.v_proj.forward(x)?;
|
||||
|
||||
let q = q
|
||||
.reshape((b, l, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let k = k
|
||||
.reshape((b, l, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let v = v
|
||||
.reshape((b, l, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let q_flat = q.flatten(0, 2)?;
|
||||
let k_flat = k.flatten(0, 2)?;
|
||||
|
||||
let q_flat = self.q_norm.forward(&q_flat)?;
|
||||
let k_flat = self.k_norm.forward(&k_flat)?;
|
||||
let q = q_flat.reshape((b, self.num_heads, l, self.head_dim))?;
|
||||
let k = k_flat.reshape((b, self.num_kv_heads, l, self.head_dim))?;
|
||||
|
||||
let (q, k) = self.rotary_emb.apply(&q, &k, offset)?;
|
||||
|
||||
// Reset KV cache if we're at the first position
|
||||
if offset == 0 {
|
||||
self.kv_cache.reset();
|
||||
}
|
||||
let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?;
|
||||
|
||||
let k = repeat_kv(k, self.num_kv_groups)?.contiguous()?;
|
||||
let v = repeat_kv(v, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let scale = 1.0 / (self.head_dim as f64).sqrt();
|
||||
let mut scores = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
|
||||
if let Some(m) = attn_mask {
|
||||
let m_dtype = m.dtype();
|
||||
let scores_dtype = scores.dtype();
|
||||
let mask = if m_dtype != scores_dtype {
|
||||
m.to_dtype(scores_dtype)?
|
||||
} else {
|
||||
m.clone()
|
||||
};
|
||||
scores = scores.broadcast_add(&mask)?;
|
||||
}
|
||||
let probs = candle_nn::ops::softmax_last_dim(&scores)?;
|
||||
let ctx = probs.matmul(&v)?; // (B, H, L, D)
|
||||
let reshaped_ctx = ctx
|
||||
.transpose(1, 2)?
|
||||
.reshape((b, l, self.num_heads * self.head_dim))?;
|
||||
self.o_proj.forward(&reshaped_ctx)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LayerWeights {
|
||||
self_attn: AttentionWeights,
|
||||
mlp: MlpWeights,
|
||||
ln1: RmsNorm,
|
||||
ln2: RmsNorm,
|
||||
}
|
||||
|
||||
impl LayerWeights {
|
||||
fn new<R: Read + Seek>(
|
||||
gg: &mut Gguf<R>,
|
||||
num_attention_heads: usize,
|
||||
num_key_value_heads: usize,
|
||||
head_dim: usize,
|
||||
rms_norm_eps: f64,
|
||||
rotary: Arc<RotaryEmbedding>,
|
||||
layer_idx: usize,
|
||||
) -> Result<Self> {
|
||||
let prefix = format!("blk.{layer_idx}");
|
||||
|
||||
let ln1 = gg.rms_norm(&format!("{prefix}.attn_norm.weight"), rms_norm_eps)?;
|
||||
let ln2 = gg.rms_norm(&format!("{prefix}.ffn_norm.weight"), rms_norm_eps)?;
|
||||
let self_attn = AttentionWeights::new(
|
||||
gg,
|
||||
num_attention_heads,
|
||||
num_key_value_heads,
|
||||
head_dim,
|
||||
rms_norm_eps,
|
||||
rotary,
|
||||
&prefix,
|
||||
)?;
|
||||
let mlp = MlpWeights::new(gg, &prefix)?;
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
mlp,
|
||||
ln1,
|
||||
ln2,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&mut self, x: &Tensor, mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
|
||||
let h = self.ln1.forward(x)?;
|
||||
let h = self.self_attn.forward(&h, mask, offset)?;
|
||||
let x = (x + h)?;
|
||||
let h2 = self.ln2.forward(&x)?;
|
||||
let h2 = h2.apply(&self.mlp)?;
|
||||
x + h2
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelWeights {
|
||||
embed_tokens: Embedding,
|
||||
layers: Vec<LayerWeights>,
|
||||
norm: RmsNorm,
|
||||
lm_head: QMatMul,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
span: tracing::Span,
|
||||
span_output: tracing::Span,
|
||||
}
|
||||
|
||||
impl ModelWeights {
|
||||
pub fn from_gguf<R: Read + Seek>(
|
||||
ct: gguf_file::Content,
|
||||
reader: &mut R,
|
||||
device: &Device,
|
||||
) -> Result<Self> {
|
||||
let mut gg = Gguf::new(ct, reader, device.clone());
|
||||
let md_get = |s: &str| match gg.metadata().get(s) {
|
||||
None => candle::bail!("cannot find {s} in metadata"),
|
||||
Some(v) => Ok(v),
|
||||
};
|
||||
|
||||
let num_attention_heads = md_get("qwen3.attention.head_count")?.to_u32()? as usize;
|
||||
let num_kv_heads = md_get("qwen3.attention.head_count_kv")?.to_u32()? as usize;
|
||||
let head_dim = md_get("qwen3.attention.key_length")?.to_u32()? as usize;
|
||||
let num_layers = md_get("qwen3.block_count")?.to_u32()? as usize;
|
||||
let hidden_size = md_get("qwen3.embedding_length")?.to_u32()? as usize;
|
||||
let max_position_embeddings = md_get("qwen3.context_length")?.to_u32()? as usize;
|
||||
let rms_norm_eps = md_get("qwen3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
|
||||
let rope_freq_base = md_get("qwen3.rope.freq_base")?.to_f32()? as f64;
|
||||
|
||||
let dtype = match gg.metadata().get("general.dtype") {
|
||||
Some(v) => match v.to_u32() {
|
||||
Ok(0) => DType::F32,
|
||||
Ok(1) => DType::F16,
|
||||
_ => DType::F16,
|
||||
},
|
||||
None => DType::F16,
|
||||
};
|
||||
|
||||
let embed_tensor = gg.tensor("token_embd.weight")?;
|
||||
let embed_tokens = Embedding::new(embed_tensor.dequantize(device)?, hidden_size);
|
||||
|
||||
let rotary = Arc::new(RotaryEmbedding::new(
|
||||
dtype,
|
||||
head_dim,
|
||||
max_position_embeddings,
|
||||
rope_freq_base,
|
||||
device,
|
||||
)?);
|
||||
|
||||
let mut layers = Vec::with_capacity(num_layers);
|
||||
for i in 0..num_layers {
|
||||
layers.push(LayerWeights::new(
|
||||
&mut gg,
|
||||
num_attention_heads,
|
||||
num_kv_heads,
|
||||
head_dim,
|
||||
rms_norm_eps,
|
||||
rotary.clone(),
|
||||
i,
|
||||
)?);
|
||||
}
|
||||
|
||||
let norm = gg.rms_norm("output_norm.weight", rms_norm_eps)?;
|
||||
// Load output projection tensor, falling back to tied embeddings like gemma3
|
||||
let lm_head_tensor = match gg.tensor("output.weight") {
|
||||
Ok(tensor) => tensor,
|
||||
Err(_) => gg.tensor("token_embd.weight")?,
|
||||
};
|
||||
let lm_head = QMatMul::from_weights(lm_head_tensor.into())?;
|
||||
let span = tracing::span!(tracing::Level::TRACE, "model");
|
||||
let span_output = tracing::span!(tracing::Level::TRACE, "output");
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
norm,
|
||||
lm_head,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
span,
|
||||
span_output,
|
||||
})
|
||||
}
|
||||
|
||||
fn causal_mask(
|
||||
&self,
|
||||
b: usize,
|
||||
tgt: usize,
|
||||
offset: usize,
|
||||
sw: Option<usize>,
|
||||
) -> Result<Tensor> {
|
||||
let minf = f32::NEG_INFINITY;
|
||||
let mask: Vec<_> = (0..tgt)
|
||||
.flat_map(|i| {
|
||||
(0..(tgt + offset)).map(move |j| {
|
||||
let past_ok = j <= i + offset;
|
||||
let sw_ok = match sw {
|
||||
Some(w) => (i + offset) as i64 - j as i64 <= w as i64,
|
||||
None => true,
|
||||
};
|
||||
if past_ok && sw_ok {
|
||||
0.
|
||||
} else {
|
||||
minf
|
||||
}
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (b, 1, tgt, tgt + offset), &self.device)?.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input: &Tensor, offset: usize) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b, l) = input.dims2()?;
|
||||
let mut h = self.embed_tokens.forward(input)?;
|
||||
let causal_mask = if l == 1 {
|
||||
None
|
||||
} else {
|
||||
Some(self.causal_mask(b, l, offset, None)?)
|
||||
};
|
||||
for layer in &mut self.layers {
|
||||
h = layer.forward(&h, causal_mask.as_ref(), offset)?;
|
||||
}
|
||||
let h = self.norm.forward(&h)?;
|
||||
let _enter = self.span_output.enter();
|
||||
let last_hidden = h.narrow(1, l - 1, 1)?;
|
||||
self.lm_head.forward(&last_hidden)?.squeeze(1)
|
||||
}
|
||||
}
|
@ -53,7 +53,7 @@ impl Qwen3RotaryEmbedding {
|
||||
}
|
||||
|
||||
/// Apply RoPE (q, k shape: B x H x L x D)
|
||||
fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
|
||||
pub(crate) fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
|
||||
let (_, _, seq_len, _) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, offset, seq_len)?;
|
||||
|
Reference in New Issue
Block a user