Qwen3 quantized implementation (#2939)

* fixed quantized_phi3 implementation

* quantized_qwen3 implementation

* Update quantized_phi3.rs

* Update quantized_phi3.rs

* add quantized_qwen3 example

* Clippy fixes.

* Cleanup.

---------

Co-authored-by: Laurent <laurent.mazare@gmail.com>
This commit is contained in:
Lucien Thomas
2025-05-08 08:06:10 -05:00
committed by GitHub
parent 637473cb5e
commit 3d05f5cf3d
5 changed files with 755 additions and 1 deletions

View File

@ -0,0 +1,11 @@
# candle-quantized-qwen3
[Qwen3]((https://qwenlm.github.io/blog/qwen3/)) is an upgraded version of Qwen2.5, released by Alibaba Cloud.
## Running the example
```bash
cargo run --example quantized-qwen3 --release -- --prompt "Write a function to count prime numbers up to N."
```
0.6b is used by default, 1.7b, 4b, 8b, 14b, and 32b models are available via `--model` argument.

View File

@ -0,0 +1,314 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use std::io::Write;
use tokenizers::Tokenizer;
use candle::quantized::gguf_file;
use candle::Tensor;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_transformers::models::quantized_qwen3::ModelWeights as Qwen3;
const DEFAULT_PROMPT: &str = "Write a Rust function to calculate the factorial of a given number.";
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
#[value(name = "0.6b")]
W3_0_6b,
#[value(name = "1.7b")]
W3_1_7b,
#[value(name = "4b")]
W3_4b,
#[value(name = "8b")]
W3_8b,
#[value(name = "14b")]
W3_14b,
#[value(name = "32b")]
W3_32b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp
#[arg(long)]
model: Option<String>,
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
/// is preserved.
#[arg(long)]
prompt: Option<String>,
/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 1000)]
sample_len: usize,
/// The tokenizer config in json format.
#[arg(long)]
tokenizer: Option<String>,
/// The temperature used to generate samples, use 0 for greedy sampling.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Process prompt elements separately.
#[arg(long)]
split_prompt: bool,
/// Run on CPU rather than GPU even if a GPU is available.
#[arg(long)]
cpu: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
/// The model size to use.
#[arg(long, default_value = "0.6b")]
which: Which,
}
impl Args {
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
let tokenizer_path = match &self.tokenizer {
Some(config) => std::path::PathBuf::from(config),
None => {
let api = hf_hub::api::sync::Api::new()?;
let repo = match self.which {
Which::W3_0_6b => "Qwen/Qwen3-0.6B",
Which::W3_1_7b => "Qwen/Qwen3-1.7B",
Which::W3_4b => "Qwen/Qwen3-4B",
Which::W3_8b => "Qwen/Qwen3-8B",
Which::W3_14b => "Qwen/Qwen3-14B",
Which::W3_32b => "Qwen/Qwen3-32B",
};
let api = api.model(repo.to_string());
api.get("tokenizer.json")?
}
};
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
}
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let model_path = match &self.model {
Some(config) => std::path::PathBuf::from(config),
None => {
let (repo, filename, revision) = match self.which {
Which::W3_0_6b => ("unsloth/Qwen3-0.6B-GGUF", "Qwen3-0.6B-Q4_K_M.gguf", "main"),
Which::W3_1_7b => ("unsloth/Qwen3-1.7B-GGUF", "Qwen3-1.7B-Q4_K_M.gguf", "main"),
Which::W3_4b => ("unsloth/Qwen3-4B-GGUF", "Qwen3-4B-Q4_K_M.gguf", "main"),
Which::W3_8b => ("unsloth/Qwen3-8B-GGUF", "Qwen3-8B-Q4_K_M.gguf", "main"),
Which::W3_14b => ("unsloth/Qwen3-14B-GGUF", "Qwen3-14B-Q4_K_M.gguf", "main"),
Which::W3_32b => ("unsloth/Qwen3-32B-GGUF", "Qwen3-32B-Q4_K_M.gguf", "main"),
};
let api = hf_hub::api::sync::Api::new()?;
api.repo(hf_hub::Repo::with_revision(
repo.to_string(),
hf_hub::RepoType::Model,
revision.to_string(),
))
.get(filename)?
}
};
Ok(model_path)
}
}
fn format_size(size_in_bytes: usize) -> String {
if size_in_bytes < 1_000 {
format!("{}B", size_in_bytes)
} else if size_in_bytes < 1_000_000 {
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
} else if size_in_bytes < 1_000_000_000 {
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
} else {
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
}
}
fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let model_path = args.model()?;
let mut file = std::fs::File::open(&model_path)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let mut model = {
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
let mut total_size_in_bytes = 0;
for (_, tensor) in model.tensor_infos.iter() {
let elem_count = tensor.shape.elem_count();
total_size_in_bytes +=
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
}
println!(
"loaded {:?} tensors ({}) in {:.2}s",
model.tensor_infos.len(),
&format_size(total_size_in_bytes),
start.elapsed().as_secs_f32(),
);
Qwen3::from_gguf(model, &mut file, &device)?
};
println!("model built");
let tokenizer = args.tokenizer()?;
let mut tos = TokenOutputStream::new(tokenizer);
let prompt_str = args
.prompt
.clone()
.unwrap_or_else(|| DEFAULT_PROMPT.to_string());
let prompt_str = format!("<|im_start|>user\n{prompt_str}<|im_end|>\n<|im_start|>assistant\n");
print!("formatted prompt: {}", &prompt_str);
let tokens = tos
.tokenizer()
.encode(prompt_str, true)
.map_err(anyhow::Error::msg)?;
let tokens = tokens.get_ids();
let to_sample = args.sample_len.saturating_sub(1);
let mut all_tokens = vec![];
let mut logits_processor = {
let temperature = args.temperature;
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (args.top_k, args.top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(args.seed, sampling)
};
let start_prompt_processing = std::time::Instant::now();
let mut next_token = if !args.split_prompt {
let input = Tensor::new(tokens, &device)?.unsqueeze(0)?;
let logits = model.forward(&input, 0)?;
let logits = logits.squeeze(0)?;
logits_processor.sample(&logits)?
} else {
let mut next_token = 0;
for (pos, token) in tokens.iter().enumerate() {
let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, pos)?;
let logits = logits.squeeze(0)?;
next_token = logits_processor.sample(&logits)?
}
next_token
};
let prompt_dt = start_prompt_processing.elapsed();
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
let eos_token = *tos.tokenizer().get_vocab(true).get("<|im_end|>").unwrap();
let start_post_prompt = std::time::Instant::now();
let mut sampled = 0;
for index in 0..to_sample {
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, tokens.len() + index)?;
let logits = logits.squeeze(0)?;
let logits = if args.repeat_penalty == 1. {
logits
} else {
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
args.repeat_penalty,
&all_tokens[start_at..],
)?
};
next_token = logits_processor.sample(&logits)?;
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
sampled += 1;
if next_token == eos_token {
break;
};
}
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
let dt = start_post_prompt.elapsed();
println!(
"\n\n{:4} prompt tokens processed: {:.2} token/s",
tokens.len(),
tokens.len() as f64 / prompt_dt.as_secs_f64(),
);
println!(
"{sampled:4} tokens generated: {:.2} token/s",
sampled as f64 / dt.as_secs_f64(),
);
Ok(())
}

View File

@ -90,6 +90,7 @@ pub mod quantized_mpt;
pub mod quantized_phi;
pub mod quantized_phi3;
pub mod quantized_qwen2;
pub mod quantized_qwen3;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;

View File

@ -0,0 +1,428 @@
//! Qwen3 implementation with quantization support.
//!
//! Based on the Qwen3 architecture and implemented with quantized weights
//! for reduced memory usage and faster inference on compatible hardware.
//!
//! References:
//! - [Qwen3 Models](https://huggingface.co/Qwen/Qwen3-0.6B) (architecture based on official implementations)
//!
use super::with_tracing::QMatMul;
use crate::{quantized_nn::RmsNorm, utils::repeat_kv};
use candle::quantized::{gguf_file, QTensor};
use candle::{DType, Device, Result, Tensor};
use candle_nn::{kv_cache::KvCache, Activation, Embedding, Module};
use std::io::{Read, Seek};
use std::sync::Arc;
struct Gguf<R: Read + Seek> {
ct: gguf_file::Content,
reader: R,
device: Device,
}
impl<R: Read + Seek> Gguf<R> {
fn new(ct: gguf_file::Content, reader: R, device: Device) -> Self {
Self { ct, reader, device }
}
fn qmatmul(&mut self, name: &str) -> Result<QMatMul> {
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
QMatMul::from_weights(ws.into())
}
fn rms_norm(&mut self, name: &str, eps: f64) -> Result<RmsNorm> {
let ws = self.ct.tensor(&mut self.reader, name, &self.device)?;
RmsNorm::from_qtensor(ws, eps)
}
fn metadata(&self) -> &std::collections::HashMap<String, gguf_file::Value> {
&self.ct.metadata
}
fn tensor(&mut self, name: &str) -> Result<QTensor> {
self.ct.tensor(&mut self.reader, name, &self.device)
}
}
#[derive(Debug, Clone)]
struct MlpWeights {
gate_proj: QMatMul,
up_proj: QMatMul,
down_proj: QMatMul,
act_fn: Activation,
span: tracing::Span,
}
impl MlpWeights {
fn new<R: Read + Seek>(gg: &mut Gguf<R>, prefix: &str) -> Result<Self> {
let gate_proj = gg.qmatmul(&format!("{prefix}.ffn_gate.weight"))?;
let up_proj = gg.qmatmul(&format!("{prefix}.ffn_up.weight"))?;
let down_proj = gg.qmatmul(&format!("{prefix}.ffn_down.weight"))?;
let act_fn = Activation::Silu;
let span = tracing::span!(tracing::Level::TRACE, "mlp");
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn,
span,
})
}
}
impl Module for MlpWeights {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let gate = self.gate_proj.forward(x)?.apply(&self.act_fn)?;
let up = self.up_proj.forward(x)?;
let gated = (gate * up)?;
self.down_proj.forward(&gated)
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(
dtype: DType,
head_dim: usize,
max_position_embeddings: usize,
rope_theta: f64,
dev: &Device,
) -> Result<Self> {
let dim = head_dim;
let max_seq_len = max_position_embeddings;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / rope_theta.powf(i as f64 / dim as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
/// Apply RoPE (q, k shape: B x H x L x D)
fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
let (_, _, seq_len, _) = q.dims4()?;
let cos = self.cos.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
let sin = self.sin.narrow(0, offset, seq_len)?.to_dtype(q.dtype())?;
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
struct AttentionWeights {
q_proj: QMatMul,
k_proj: QMatMul,
v_proj: QMatMul,
o_proj: QMatMul,
q_norm: RmsNorm,
k_norm: RmsNorm,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: KvCache,
span_attn: tracing::Span,
}
impl AttentionWeights {
fn new<R: Read + Seek>(
gg: &mut Gguf<R>,
num_heads: usize,
num_kv_heads: usize,
head_dim: usize,
rms_norm_eps: f64,
rotary_emb: Arc<RotaryEmbedding>,
prefix: &str,
) -> Result<Self> {
let num_kv_groups = num_heads / num_kv_heads;
let q_proj = gg.qmatmul(&format!("{prefix}.attn_q.weight"))?;
let k_proj = gg.qmatmul(&format!("{prefix}.attn_k.weight"))?;
let v_proj = gg.qmatmul(&format!("{prefix}.attn_v.weight"))?;
let o_proj = gg.qmatmul(&format!("{prefix}.attn_output.weight"))?;
let q_norm = gg.rms_norm(&format!("{prefix}.attn_q_norm.weight"), rms_norm_eps)?;
let k_norm = gg.rms_norm(&format!("{prefix}.attn_k_norm.weight"), rms_norm_eps)?;
let max_position_embeddings = gg
.metadata()
.get("qwen3.context_length")
.and_then(|v| v.to_u32().ok())
.unwrap_or(4096) as usize;
let kv_cache = KvCache::new(2, max_position_embeddings);
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
q_norm,
k_norm,
num_heads,
num_kv_heads,
num_kv_groups,
head_dim,
rotary_emb,
kv_cache,
span_attn,
})
}
fn forward(&mut self, x: &Tensor, attn_mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let (b, l, _) = x.dims3()?;
let q = self.q_proj.forward(x)?;
let k = self.k_proj.forward(x)?;
let v = self.v_proj.forward(x)?;
let q = q
.reshape((b, l, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b, l, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b, l, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let q_flat = q.flatten(0, 2)?;
let k_flat = k.flatten(0, 2)?;
let q_flat = self.q_norm.forward(&q_flat)?;
let k_flat = self.k_norm.forward(&k_flat)?;
let q = q_flat.reshape((b, self.num_heads, l, self.head_dim))?;
let k = k_flat.reshape((b, self.num_kv_heads, l, self.head_dim))?;
let (q, k) = self.rotary_emb.apply(&q, &k, offset)?;
// Reset KV cache if we're at the first position
if offset == 0 {
self.kv_cache.reset();
}
let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?;
let k = repeat_kv(k, self.num_kv_groups)?.contiguous()?;
let v = repeat_kv(v, self.num_kv_groups)?.contiguous()?;
let scale = 1.0 / (self.head_dim as f64).sqrt();
let mut scores = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
if let Some(m) = attn_mask {
let m_dtype = m.dtype();
let scores_dtype = scores.dtype();
let mask = if m_dtype != scores_dtype {
m.to_dtype(scores_dtype)?
} else {
m.clone()
};
scores = scores.broadcast_add(&mask)?;
}
let probs = candle_nn::ops::softmax_last_dim(&scores)?;
let ctx = probs.matmul(&v)?; // (B, H, L, D)
let reshaped_ctx = ctx
.transpose(1, 2)?
.reshape((b, l, self.num_heads * self.head_dim))?;
self.o_proj.forward(&reshaped_ctx)
}
}
#[derive(Debug, Clone)]
struct LayerWeights {
self_attn: AttentionWeights,
mlp: MlpWeights,
ln1: RmsNorm,
ln2: RmsNorm,
}
impl LayerWeights {
fn new<R: Read + Seek>(
gg: &mut Gguf<R>,
num_attention_heads: usize,
num_key_value_heads: usize,
head_dim: usize,
rms_norm_eps: f64,
rotary: Arc<RotaryEmbedding>,
layer_idx: usize,
) -> Result<Self> {
let prefix = format!("blk.{layer_idx}");
let ln1 = gg.rms_norm(&format!("{prefix}.attn_norm.weight"), rms_norm_eps)?;
let ln2 = gg.rms_norm(&format!("{prefix}.ffn_norm.weight"), rms_norm_eps)?;
let self_attn = AttentionWeights::new(
gg,
num_attention_heads,
num_key_value_heads,
head_dim,
rms_norm_eps,
rotary,
&prefix,
)?;
let mlp = MlpWeights::new(gg, &prefix)?;
Ok(Self {
self_attn,
mlp,
ln1,
ln2,
})
}
fn forward(&mut self, x: &Tensor, mask: Option<&Tensor>, offset: usize) -> Result<Tensor> {
let h = self.ln1.forward(x)?;
let h = self.self_attn.forward(&h, mask, offset)?;
let x = (x + h)?;
let h2 = self.ln2.forward(&x)?;
let h2 = h2.apply(&self.mlp)?;
x + h2
}
}
#[derive(Debug, Clone)]
pub struct ModelWeights {
embed_tokens: Embedding,
layers: Vec<LayerWeights>,
norm: RmsNorm,
lm_head: QMatMul,
device: Device,
dtype: DType,
span: tracing::Span,
span_output: tracing::Span,
}
impl ModelWeights {
pub fn from_gguf<R: Read + Seek>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
) -> Result<Self> {
let mut gg = Gguf::new(ct, reader, device.clone());
let md_get = |s: &str| match gg.metadata().get(s) {
None => candle::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
let num_attention_heads = md_get("qwen3.attention.head_count")?.to_u32()? as usize;
let num_kv_heads = md_get("qwen3.attention.head_count_kv")?.to_u32()? as usize;
let head_dim = md_get("qwen3.attention.key_length")?.to_u32()? as usize;
let num_layers = md_get("qwen3.block_count")?.to_u32()? as usize;
let hidden_size = md_get("qwen3.embedding_length")?.to_u32()? as usize;
let max_position_embeddings = md_get("qwen3.context_length")?.to_u32()? as usize;
let rms_norm_eps = md_get("qwen3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let rope_freq_base = md_get("qwen3.rope.freq_base")?.to_f32()? as f64;
let dtype = match gg.metadata().get("general.dtype") {
Some(v) => match v.to_u32() {
Ok(0) => DType::F32,
Ok(1) => DType::F16,
_ => DType::F16,
},
None => DType::F16,
};
let embed_tensor = gg.tensor("token_embd.weight")?;
let embed_tokens = Embedding::new(embed_tensor.dequantize(device)?, hidden_size);
let rotary = Arc::new(RotaryEmbedding::new(
dtype,
head_dim,
max_position_embeddings,
rope_freq_base,
device,
)?);
let mut layers = Vec::with_capacity(num_layers);
for i in 0..num_layers {
layers.push(LayerWeights::new(
&mut gg,
num_attention_heads,
num_kv_heads,
head_dim,
rms_norm_eps,
rotary.clone(),
i,
)?);
}
let norm = gg.rms_norm("output_norm.weight", rms_norm_eps)?;
// Load output projection tensor, falling back to tied embeddings like gemma3
let lm_head_tensor = match gg.tensor("output.weight") {
Ok(tensor) => tensor,
Err(_) => gg.tensor("token_embd.weight")?,
};
let lm_head = QMatMul::from_weights(lm_head_tensor.into())?;
let span = tracing::span!(tracing::Level::TRACE, "model");
let span_output = tracing::span!(tracing::Level::TRACE, "output");
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: device.clone(),
dtype,
span,
span_output,
})
}
fn causal_mask(
&self,
b: usize,
tgt: usize,
offset: usize,
sw: Option<usize>,
) -> Result<Tensor> {
let minf = f32::NEG_INFINITY;
let mask: Vec<_> = (0..tgt)
.flat_map(|i| {
(0..(tgt + offset)).map(move |j| {
let past_ok = j <= i + offset;
let sw_ok = match sw {
Some(w) => (i + offset) as i64 - j as i64 <= w as i64,
None => true,
};
if past_ok && sw_ok {
0.
} else {
minf
}
})
})
.collect();
Tensor::from_slice(&mask, (b, 1, tgt, tgt + offset), &self.device)?.to_dtype(self.dtype)
}
pub fn forward(&mut self, input: &Tensor, offset: usize) -> Result<Tensor> {
let _enter = self.span.enter();
let (b, l) = input.dims2()?;
let mut h = self.embed_tokens.forward(input)?;
let causal_mask = if l == 1 {
None
} else {
Some(self.causal_mask(b, l, offset, None)?)
};
for layer in &mut self.layers {
h = layer.forward(&h, causal_mask.as_ref(), offset)?;
}
let h = self.norm.forward(&h)?;
let _enter = self.span_output.enter();
let last_hidden = h.narrow(1, l - 1, 1)?;
self.lm_head.forward(&last_hidden)?.squeeze(1)
}
}

View File

@ -53,7 +53,7 @@ impl Qwen3RotaryEmbedding {
}
/// Apply RoPE (q, k shape: B x H x L x D)
fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
pub(crate) fn apply(&self, q: &Tensor, k: &Tensor, offset: usize) -> Result<(Tensor, Tensor)> {
let (_, _, seq_len, _) = q.dims4()?;
let cos = self.cos.narrow(0, offset, seq_len)?;
let sin = self.sin.narrow(0, offset, seq_len)?;