Add Efficientnet (#572)

* EfficientNet.

* Complete the efficientnet implementation.

* Improve group handling.

* Get the efficientnet to work.
This commit is contained in:
Laurent Mazare
2023-08-23 18:02:58 +01:00
committed by GitHub
parent eedd85ffa7
commit 431051cc32
4 changed files with 448 additions and 11 deletions

View File

@ -93,8 +93,8 @@ impl Tensor {
let params = ParamsConv1D {
b_size,
l_in,
c_out,
c_in,
c_out: c_out / groups,
c_in: c_in / groups,
k_size,
padding,
stride,
@ -103,9 +103,11 @@ impl Tensor {
self.conv1d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.map(|block| block.conv1d_single_group(kernel, &params))
.zip(&kernel)
.map(|(block, kernel)| block.conv1d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
@ -146,8 +148,8 @@ impl Tensor {
i_w,
k_h,
k_w,
c_out,
c_in,
c_out: c_out / groups,
c_in: c_in / groups,
padding,
stride,
};
@ -155,9 +157,11 @@ impl Tensor {
self.conv2d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.map(|block| block.conv2d_single_group(kernel, &params))
.zip(&kernel)
.map(|(block, kernel)| block.conv2d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}

View File

@ -0,0 +1,419 @@
//! EfficientNet implementation.
//!
//! https://arxiv.org/abs/1905.11946
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use candle::{DType, IndexOp, Result, Tensor, D};
use candle_nn as nn;
use nn::{Module, VarBuilder};
// Based on the Python version from torchvision.
// https://github.com/pytorch/vision/blob/0d75d9e5516f446c9c0ef93bd4ed9fea13992d06/torchvision/models/efficientnet.py#L47
#[derive(Debug, Clone, Copy)]
pub struct MBConvConfig {
expand_ratio: f64,
kernel: usize,
stride: usize,
input_channels: usize,
out_channels: usize,
num_layers: usize,
}
fn make_divisible(v: f64, divisor: usize) -> usize {
let min_value = divisor;
let new_v = usize::max(
min_value,
(v + divisor as f64 * 0.5) as usize / divisor * divisor,
);
if (new_v as f64) < 0.9 * v {
new_v + divisor
} else {
new_v
}
}
fn bneck_confs(width_mult: f64, depth_mult: f64) -> Vec<MBConvConfig> {
let bneck_conf = |e, k, s, i, o, n| {
let input_channels = make_divisible(i as f64 * width_mult, 8);
let out_channels = make_divisible(o as f64 * width_mult, 8);
let num_layers = (n as f64 * depth_mult).ceil() as usize;
MBConvConfig {
expand_ratio: e,
kernel: k,
stride: s,
input_channels,
out_channels,
num_layers,
}
};
vec![
bneck_conf(1., 3, 1, 32, 16, 1),
bneck_conf(6., 3, 2, 16, 24, 2),
bneck_conf(6., 5, 2, 24, 40, 2),
bneck_conf(6., 3, 2, 40, 80, 3),
bneck_conf(6., 5, 1, 80, 112, 3),
bneck_conf(6., 5, 2, 112, 192, 4),
bneck_conf(6., 3, 1, 192, 320, 1),
]
}
impl MBConvConfig {
fn b0() -> Vec<Self> {
bneck_confs(1.0, 1.0)
}
fn b1() -> Vec<Self> {
bneck_confs(1.0, 1.1)
}
fn b2() -> Vec<Self> {
bneck_confs(1.1, 1.2)
}
fn b3() -> Vec<Self> {
bneck_confs(1.2, 1.4)
}
fn b4() -> Vec<Self> {
bneck_confs(1.4, 1.8)
}
fn b5() -> Vec<Self> {
bneck_confs(1.6, 2.2)
}
fn b6() -> Vec<Self> {
bneck_confs(1.8, 2.6)
}
fn b7() -> Vec<Self> {
bneck_confs(2.0, 3.1)
}
}
/// Conv2D with same padding.
#[derive(Debug)]
struct Conv2DSame {
conv2d: nn::Conv2d,
s: usize,
k: usize,
}
impl Conv2DSame {
fn new(
vb: VarBuilder,
i: usize,
o: usize,
k: usize,
stride: usize,
groups: usize,
bias: bool,
) -> Result<Self> {
let conv_config = nn::Conv2dConfig {
stride,
groups,
..Default::default()
};
let conv2d = if bias {
nn::conv2d(i, o, k, conv_config, vb)?
} else {
nn::conv2d_no_bias(i, o, k, conv_config, vb)?
};
Ok(Self {
conv2d,
s: stride,
k,
})
}
}
impl Module for Conv2DSame {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let s = self.s;
let k = self.k;
let (_, _, ih, iw) = xs.dims4()?;
let oh = (ih + s - 1) / s;
let ow = (iw + s - 1) / s;
let pad_h = usize::max((oh - 1) * s + k - ih, 0);
let pad_w = usize::max((ow - 1) * s + k - iw, 0);
if pad_h > 0 || pad_w > 0 {
let xs = xs.pad_with_zeros(2, pad_h / 2, pad_h - pad_h / 2)?;
let xs = xs.pad_with_zeros(3, pad_w / 2, pad_w - pad_w / 2)?;
self.conv2d.forward(&xs)
} else {
self.conv2d.forward(xs)
}
}
}
#[derive(Debug)]
struct ConvNormActivation {
conv2d: Conv2DSame,
bn2d: nn::BatchNorm,
activation: bool,
}
impl ConvNormActivation {
fn new(
vb: VarBuilder,
i: usize,
o: usize,
k: usize,
stride: usize,
groups: usize,
) -> Result<Self> {
let conv2d = Conv2DSame::new(vb.pp("0"), i, o, k, stride, groups, false)?;
let bn2d = nn::batch_norm(o, 1e-3, vb.pp("1"))?;
Ok(Self {
conv2d,
bn2d,
activation: true,
})
}
fn no_activation(self) -> Self {
Self {
activation: false,
..self
}
}
}
impl Module for ConvNormActivation {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.conv2d.forward(xs)?;
let xs = self.bn2d.forward(&xs)?;
if self.activation {
swish(&xs)
} else {
Ok(xs)
}
}
}
#[derive(Debug)]
struct SqueezeExcitation {
fc1: Conv2DSame,
fc2: Conv2DSame,
}
impl SqueezeExcitation {
fn new(vb: VarBuilder, in_channels: usize, squeeze_channels: usize) -> Result<Self> {
let fc1 = Conv2DSame::new(vb.pp("fc1"), in_channels, squeeze_channels, 1, 1, 1, true)?;
let fc2 = Conv2DSame::new(vb.pp("fc2"), squeeze_channels, in_channels, 1, 1, 1, true)?;
Ok(Self { fc1, fc2 })
}
}
impl Module for SqueezeExcitation {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
// equivalent to adaptive_avg_pool2d([1, 1])
let xs = xs.mean_keepdim(D::Minus2)?.mean_keepdim(D::Minus1)?;
let xs = self.fc1.forward(&xs)?;
let xs = swish(&xs)?;
let xs = self.fc2.forward(&xs)?;
let xs = nn::ops::sigmoid(&xs)?;
residual.broadcast_mul(&xs)
}
}
#[derive(Debug)]
struct MBConv {
expand_cna: Option<ConvNormActivation>,
depthwise_cna: ConvNormActivation,
squeeze_excitation: SqueezeExcitation,
project_cna: ConvNormActivation,
config: MBConvConfig,
}
impl MBConv {
fn new(vb: VarBuilder, c: MBConvConfig) -> Result<Self> {
let vb = vb.pp("block");
let exp = make_divisible(c.input_channels as f64 * c.expand_ratio, 8);
let expand_cna = if exp != c.input_channels {
Some(ConvNormActivation::new(
vb.pp("0"),
c.input_channels,
exp,
1,
1,
1,
)?)
} else {
None
};
let start_index = if expand_cna.is_some() { 1 } else { 0 };
let depthwise_cna =
ConvNormActivation::new(vb.pp(start_index), exp, exp, c.kernel, c.stride, exp)?;
let squeeze_channels = usize::max(1, c.input_channels / 4);
let squeeze_excitation =
SqueezeExcitation::new(vb.pp(start_index + 1), exp, squeeze_channels)?;
let project_cna =
ConvNormActivation::new(vb.pp(start_index + 2), exp, c.out_channels, 1, 1, 1)?
.no_activation();
Ok(Self {
expand_cna,
depthwise_cna,
squeeze_excitation,
project_cna,
config: c,
})
}
}
impl Module for MBConv {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let use_res_connect =
self.config.stride == 1 && self.config.input_channels == self.config.out_channels;
let ys = match &self.expand_cna {
Some(expand_cna) => expand_cna.forward(xs)?,
None => xs.clone(),
};
let ys = self.depthwise_cna.forward(&ys)?;
let ys = self.squeeze_excitation.forward(&ys)?;
let ys = self.project_cna.forward(&ys)?;
if use_res_connect {
ys + xs
} else {
Ok(ys)
}
}
}
fn swish(s: &Tensor) -> Result<Tensor> {
s * nn::ops::sigmoid(s)?
}
#[derive(Debug)]
struct EfficientNet {
init_cna: ConvNormActivation,
blocks: Vec<MBConv>,
final_cna: ConvNormActivation,
classifier: nn::Linear,
}
impl EfficientNet {
fn new(p: VarBuilder, configs: Vec<MBConvConfig>, nclasses: usize) -> Result<Self> {
let f_p = p.pp("features");
let first_in_c = configs[0].input_channels;
let last_out_c = configs.last().unwrap().out_channels;
let final_out_c = 4 * last_out_c;
let init_cna = ConvNormActivation::new(f_p.pp(0), 3, first_in_c, 3, 2, 1)?;
let nconfigs = configs.len();
let mut blocks = vec![];
for (index, cnf) in configs.into_iter().enumerate() {
let f_p = f_p.pp(index + 1);
for r_index in 0..cnf.num_layers {
let cnf = if r_index == 0 {
cnf
} else {
MBConvConfig {
input_channels: cnf.out_channels,
stride: 1,
..cnf
}
};
blocks.push(MBConv::new(f_p.pp(r_index), cnf)?)
}
}
let final_cna =
ConvNormActivation::new(f_p.pp(nconfigs + 1), last_out_c, final_out_c, 1, 1, 1)?;
let classifier = nn::linear(final_out_c, nclasses, p.pp("classifier.1"))?;
Ok(Self {
init_cna,
blocks,
final_cna,
classifier,
})
}
}
impl Module for EfficientNet {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = self.init_cna.forward(xs)?;
for block in self.blocks.iter() {
xs = block.forward(&xs)?
}
let xs = self.final_cna.forward(&xs)?;
// Equivalent to adaptive_avg_pool2d([1, 1]) -> squeeze(-1) -> squeeze(-1)
let xs = xs.mean(D::Minus1)?.mean(D::Minus1)?;
self.classifier.forward(&xs)
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
B0,
B1,
B2,
B3,
B4,
B5,
B6,
B7,
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Variant of the model to use.
#[arg(value_enum, long, default_value_t = Which::B2)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-dino-v2".into());
api.get("dinov2_vits14.safetensors")?
}
Some(model) => model.into(),
};
let weights = unsafe { candle::safetensors::MmapedFile::new(model_file)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
let cfg = match args.which {
Which::B0 => MBConvConfig::b0(),
Which::B1 => MBConvConfig::b1(),
Which::B2 => MBConvConfig::b2(),
Which::B3 => MBConvConfig::b3(),
Which::B4 => MBConvConfig::b4(),
Which::B5 => MBConvConfig::b5(),
Which::B6 => MBConvConfig::b6(),
Which::B7 => MBConvConfig::b7(),
};
let model = EfficientNet::new(vb, cfg, candle_examples::imagenet::CLASS_COUNT as usize)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

View File

@ -124,7 +124,11 @@ pub fn conv1d(
vs: crate::VarBuilder,
) -> Result<Conv1d> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init((out_channels, in_channels, kernel_size), "weight", init_ws)?;
let ws = vs.get_or_init(
(out_channels, in_channels / cfg.groups, kernel_size),
"weight",
init_ws,
)?;
let bound = 1. / (in_channels as f64).sqrt();
let init_bs = crate::Init::Uniform {
lo: -bound,
@ -143,7 +147,12 @@ pub fn conv2d(
) -> Result<Conv2d> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init(
(out_channels, in_channels, kernel_size, kernel_size),
(
out_channels,
in_channels / cfg.groups,
kernel_size,
kernel_size,
),
"weight",
init_ws,
)?;
@ -165,7 +174,12 @@ pub fn conv2d_no_bias(
) -> Result<Conv2d> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init(
(out_channels, in_channels, kernel_size, kernel_size),
(
out_channels,
in_channels / cfg.groups,
kernel_size,
kernel_size,
),
"weight",
init_ws,
)?;

View File

@ -129,7 +129,7 @@ impl<'a> VarBuilder<'a> {
})
}
pub fn push_prefix(&self, s: &str) -> Self {
pub fn push_prefix<S: ToString>(&self, s: S) -> Self {
let mut path = self.path.clone();
path.push(s.to_string());
Self {
@ -139,7 +139,7 @@ impl<'a> VarBuilder<'a> {
}
/// Short alias for `push_prefix`.
pub fn pp(&self, s: &str) -> Self {
pub fn pp<S: ToString>(&self, s: S) -> Self {
self.push_prefix(s)
}