Use the hub files for the marian example. (#1220)

* Use the hub files for the marian example.

* Use the secondary decoder.

* Add a readme.

* More readme.
This commit is contained in:
Laurent Mazare
2023-10-30 18:29:36 +01:00
committed by GitHub
parent c05c0a8213
commit 4c967b9184
4 changed files with 93 additions and 27 deletions

View File

@ -103,6 +103,8 @@ We also provide a some command line based examples using state of the art models
evaluation, segmentation).
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
generate captions for an image.
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
model, generates the translated text from the input text.
Run them using commands like:
```
@ -174,6 +176,8 @@ If you have an addition to this list, please submit a pull request.
- Wurstchen v2.
- Image to text.
- BLIP.
- Text to text.
- Marian MT (Machine Translation).
- Computer Vision Models.
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
- yolo-v3, yolo-v8.

View File

@ -0,0 +1,19 @@
# candle-marian-mt
`marian-mt` is a neural machine translation model. In this example it is used to
translate text from French to English. See the associated [model
card](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en) for details on
the model itself.
## Running an example
```bash
cargo run --example marian-mt --release -- \
--text "Demain, dès l'aube, à l'heure où blanchit la campagne, Je partirai. Vois-tu, je sais que tu m'attends. J'irai par la forêt, j'irai par la montagne. Je ne puis demeurer loin de toi plus longtemps."
```
```
<NIL> Tomorrow, at dawn, at the time when the country is whitening, I will go. See,
I know you are waiting for me. I will go through the forest, I will go through the
mountain. I cannot stay far from you any longer.</s>
```

View File

@ -8,7 +8,6 @@ use anyhow::Error as E;
use clap::Parser;
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::marian;
@ -18,10 +17,13 @@ use tokenizers::Tokenizer;
#[derive(Parser)]
struct Args {
#[arg(long)]
model: String,
model: Option<String>,
#[arg(long)]
tokenizer: String,
tokenizer: Option<String>,
#[arg(long)]
tokenizer_dec: Option<String>,
/// Run on CPU rather than on GPU.
#[arg(long)]
@ -37,25 +39,52 @@ struct Args {
}
pub fn main() -> anyhow::Result<()> {
use hf_hub::api::sync::Api;
let args = Args::parse();
let config = marian::Config::opus_mt_tc_big_fr_en();
let tokenizer = {
let tokenizer = match args.tokenizer {
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
None => Api::new()?
.model("lmz/candle-marian".to_string())
.get("tokenizer-marian-fr.json")?,
};
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let tokenizer_dec = {
let tokenizer = match args.tokenizer_dec {
Some(tokenizer) => std::path::PathBuf::from(tokenizer),
None => Api::new()?
.model("lmz/candle-marian".to_string())
.get("tokenizer-marian-en.json")?,
};
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[&args.model], DType::F32, &device)? };
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => Api::new()?
.model("Helsinki-NLP/opus-mt-tc-big-fr-en".to_string())
.get("model.safetensors")?,
};
unsafe { VarBuilder::from_mmaped_safetensors(&[&model], DType::F32, &device)? }
};
let model = marian::MTModel::new(&config, vb)?;
let tokenizer = Tokenizer::from_file(&args.tokenizer).map_err(E::msg)?;
let mut tokenizer_dec = TokenOutputStream::new(tokenizer.clone());
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let encoder_xs = {
let tokens = tokenizer
let mut tokens = tokenizer
.encode(args.text, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
tokens.push(config.eos_token_id);
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
model.encoder().forward(&tokens, 0)?
};
@ -70,20 +99,15 @@ pub fn main() -> anyhow::Result<()> {
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
println!("{token}");
if token == config.eos_token_id || token == config.forced_eos_token_id {
break;
}
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!(
"{}",
tokenizer_dec.decode(&token_ids, true).map_err(E::msg)?
);
Ok(())
}

View File

@ -135,7 +135,12 @@ impl Attention {
.contiguous()
}
fn forward(&self, xs: &Tensor, kv_states: Option<&Tensor>) -> Result<Tensor> {
fn forward(
&self,
xs: &Tensor,
kv_states: Option<&Tensor>,
attn_mask: Option<&Tensor>,
) -> Result<Tensor> {
let is_cross_attn = kv_states.is_some();
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
@ -156,7 +161,10 @@ impl Attention {
let key_states = key_states.reshape(proj_shape)?;
let value_states = value_states.reshape(proj_shape)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
// todo: attn_mask
let attn_weights = match attn_mask {
None => attn_weights,
Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
};
let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_probs.matmul(&value_states)?;
attn_output
@ -196,8 +204,8 @@ impl EncoderLayer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs =
(self.self_attn.forward(xs, None)? + residual)?.apply(&self.self_attn_layer_norm)?;
let xs = (self.self_attn.forward(xs, None, None)? + residual)?
.apply(&self.self_attn_layer_norm)?;
let residual = &xs;
let xs = xs
.apply(&self.fc1)?
@ -241,15 +249,20 @@ impl DecoderLayer {
})
}
fn forward(&self, xs: &Tensor, encoder_xs: Option<&Tensor>) -> Result<Tensor> {
fn forward(
&self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
attn_mask: &Tensor,
) -> Result<Tensor> {
let residual = xs;
let xs =
(self.self_attn.forward(xs, None)? + residual)?.apply(&self.self_attn_layer_norm)?;
let xs = (self.self_attn.forward(xs, None, Some(attn_mask))? + residual)?
.apply(&self.self_attn_layer_norm)?;
let xs = match encoder_xs {
None => xs,
Some(encoder_xs) => {
let residual = &xs;
let xs = self.encoder_attn.forward(&xs, Some(encoder_xs))?;
let xs = self.encoder_attn.forward(&xs, Some(encoder_xs), None)?;
(residual + xs)?.apply(&self.encoder_attn_layer_norm)?
}
};
@ -346,6 +359,7 @@ impl Decoder {
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
@ -358,7 +372,7 @@ impl Decoder {
.unsqueeze(0)?;
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter() {
xs = layer.forward(&xs, encoder_xs)?;
xs = layer.forward(&xs, encoder_xs, attn_mask)?;
}
Ok(xs)
}
@ -413,9 +427,14 @@ impl MTModel {
}
pub fn decode(&self, xs: &Tensor, encoder_xs: &Tensor) -> Result<Tensor> {
let seq_len = xs.dim(1)?;
let mask: Vec<_> = (0..seq_len)
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
self.model
.decoder
.forward(xs, Some(encoder_xs), 0)?
.forward(xs, Some(encoder_xs), 0, &mask)?
.apply(&self.lm_head)?
.broadcast_add(&self.final_logits_bias)
}