mirror of
https://github.com/huggingface/candle.git
synced 2025-06-14 09:57:10 +00:00
Add a quantized version of recurrent-gemma. (#2054)
* Add a quantized version of recurrent-gemma. * Share the rglru part. * Get the quantized gemma model to work.
This commit is contained in:
@ -63,8 +63,9 @@ We also provide a some command line based examples using state of the art models
|
||||
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
|
||||
the SOLAR-10.7B variant.
|
||||
- [Falcon](./candle-examples/examples/falcon/): general LLM.
|
||||
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google
|
||||
Deepmind.
|
||||
- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google Deepmind.
|
||||
- [RecurrentGemma](./candle-examples/examples/recurrent-gemma/): 2b and 7b
|
||||
Griffin based models from Google that mix attention with a RNN like state.
|
||||
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
|
||||
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
|
||||
pre-trained on 1T tokens of English and code datasets. Also supports
|
||||
|
@ -7,7 +7,8 @@ extern crate accelerate_src;
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::recurrent_gemma::{Config, Model};
|
||||
use candle_transformers::models::quantized_recurrent_gemma::Model as QModel;
|
||||
use candle_transformers::models::recurrent_gemma::{Config, Model as BModel};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
@ -16,6 +17,20 @@ use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
enum Model {
|
||||
B(BModel),
|
||||
Q(QModel),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, xs: &Tensor, pos: usize) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::B(m) => m.forward(xs, pos),
|
||||
Self::Q(m) => m.forward(xs, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "2b")]
|
||||
@ -195,6 +210,9 @@ struct Args {
|
||||
/// The model to use.
|
||||
#[arg(long, default_value = "2b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -250,7 +268,18 @@ fn main() -> Result<()> {
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
None => {
|
||||
if args.quantized {
|
||||
let filename = match args.which {
|
||||
Which::Base2B => "recurrent-gemma-2b-q4k.gguf",
|
||||
Which::Instruct2B => "recurrent-gemma-7b-q4k.gguf",
|
||||
};
|
||||
let filename = api.model("lmz/candle-gemma".to_string()).get(filename)?;
|
||||
vec![filename]
|
||||
} else {
|
||||
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
@ -263,8 +292,16 @@ fn main() -> Result<()> {
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb.pp("model"))?;
|
||||
let model = if args.quantized {
|
||||
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(
|
||||
&filenames[0],
|
||||
&device,
|
||||
)?;
|
||||
Model::Q(QModel::new(&config, vb.pp("model"))?)
|
||||
} else {
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
Model::B(BModel::new(&config, vb.pp("model"))?)
|
||||
};
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
|
@ -37,6 +37,7 @@ pub mod quantized_mistral;
|
||||
pub mod quantized_mixformer;
|
||||
pub mod quantized_moondream;
|
||||
pub mod quantized_mpt;
|
||||
pub mod quantized_recurrent_gemma;
|
||||
pub mod quantized_rwkv_v5;
|
||||
pub mod quantized_rwkv_v6;
|
||||
pub mod quantized_stable_lm;
|
||||
|
412
candle-transformers/src/models/quantized_recurrent_gemma.rs
Normal file
412
candle-transformers/src/models/quantized_recurrent_gemma.rs
Normal file
@ -0,0 +1,412 @@
|
||||
use crate::quantized_nn::{linear_b as linear, Embedding, Linear};
|
||||
pub use crate::quantized_var_builder::VarBuilder;
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::models::recurrent_gemma::{Config, Rglru, RmsNorm, RotaryEmbedding, TemporalBlockType};
|
||||
|
||||
fn rms_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<RmsNorm> {
|
||||
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
|
||||
Ok(RmsNorm::from_weight(weight, eps))
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
gate_proj: Linear,
|
||||
up_proj: Linear,
|
||||
down_proj: Linear,
|
||||
act_fn: candle_nn::Activation,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let intermediate_size = cfg.intermediate_size / 2;
|
||||
let gate_proj = linear(h, intermediate_size, true, vb.pp("gate_proj"))?;
|
||||
let up_proj = linear(h, intermediate_size, true, vb.pp("up_proj"))?;
|
||||
let down_proj = linear(intermediate_size, h, true, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
gate_proj,
|
||||
up_proj,
|
||||
down_proj,
|
||||
act_fn: cfg.hidden_activation,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let gate = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
|
||||
(gate * xs.apply(&self.up_proj))?.apply(&self.down_proj)
|
||||
}
|
||||
}
|
||||
|
||||
fn rglru(cfg: &Config, vb: VarBuilder) -> Result<Rglru> {
|
||||
let h = cfg.hidden_size;
|
||||
let lru_width = cfg.lru_width.unwrap_or(h);
|
||||
let n_heads = cfg.num_attention_heads;
|
||||
let block_width = lru_width / n_heads;
|
||||
let recurrent_param = vb.get((lru_width,), "recurrent_param")?;
|
||||
let input_gate_weight = vb.get((n_heads, block_width, block_width), "input_gate_weight")?;
|
||||
let input_gate_bias = vb.get((n_heads, block_width), "input_gate_bias")?;
|
||||
let recurrent_gate_weight =
|
||||
vb.get((n_heads, block_width, block_width), "recurrent_gate_weight")?;
|
||||
let recurrent_gate_bias = vb.get((n_heads, block_width), "recurrent_gate_bias")?;
|
||||
Ok(Rglru {
|
||||
recurrent_param: recurrent_param.dequantize(vb.device())?,
|
||||
input_gate_bias: input_gate_bias.dequantize(vb.device())?,
|
||||
input_gate_weight: input_gate_weight.dequantize(vb.device())?,
|
||||
recurrent_gate_bias: recurrent_gate_bias.dequantize(vb.device())?,
|
||||
recurrent_gate_weight: recurrent_gate_weight.dequantize(vb.device())?,
|
||||
block_width,
|
||||
n_heads,
|
||||
recurrent_states: None,
|
||||
})
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RecurrentBlock {
|
||||
linear_y: Linear,
|
||||
linear_x: Linear,
|
||||
linear_out: Linear,
|
||||
conv_1d: candle_nn::Conv1d,
|
||||
conv1d_state: Option<Tensor>,
|
||||
conv1d_width: usize,
|
||||
rg_lru: Rglru,
|
||||
act_fn: candle_nn::Activation,
|
||||
}
|
||||
|
||||
impl RecurrentBlock {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let lru_width = cfg.lru_width.unwrap_or(h);
|
||||
let linear_y = linear(h, lru_width, true, vb.pp("linear_y"))?;
|
||||
let linear_x = linear(h, lru_width, true, vb.pp("linear_x"))?;
|
||||
let linear_out = linear(lru_width, h, true, vb.pp("linear_out"))?;
|
||||
|
||||
let conv_1d = {
|
||||
let ws = vb
|
||||
.get((lru_width, 1, cfg.conv1d_width), "conv_1d.weight")?
|
||||
.dequantize(vb.device())?;
|
||||
let bs = vb.get(lru_width, "conv_1d.bias")?.dequantize(vb.device())?;
|
||||
let config = candle_nn::Conv1dConfig {
|
||||
groups: lru_width,
|
||||
padding: cfg.conv1d_width - 1,
|
||||
..Default::default()
|
||||
};
|
||||
candle_nn::Conv1d::new(ws, Some(bs), config)
|
||||
};
|
||||
let rg_lru = rglru(cfg, vb.pp("rg_lru"))?;
|
||||
Ok(Self {
|
||||
linear_y,
|
||||
linear_x,
|
||||
linear_out,
|
||||
conv_1d,
|
||||
conv1d_state: None,
|
||||
conv1d_width: cfg.conv1d_width,
|
||||
rg_lru,
|
||||
act_fn: cfg.hidden_activation,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len, _) = xs.dims3()?;
|
||||
|
||||
let y_branch = xs.apply(&self.linear_y)?.apply(&self.act_fn)?;
|
||||
let x_branch = xs.apply(&self.linear_x)?.transpose(1, 2)?;
|
||||
let x_branch = if pos == 0 {
|
||||
let x_len = x_branch.dim(D::Minus1)?;
|
||||
let pad = self.conv1d_width as i64 - x_len as i64 - 1;
|
||||
let padded = match pad.cmp(&0) {
|
||||
std::cmp::Ordering::Equal => x_branch.clone(),
|
||||
std::cmp::Ordering::Less => {
|
||||
let rev_pad = (-pad) as usize;
|
||||
x_branch.narrow(D::Minus1, rev_pad, x_len - rev_pad)?
|
||||
}
|
||||
std::cmp::Ordering::Greater => {
|
||||
x_branch.pad_with_zeros(D::Minus1, pad as usize, 0)?
|
||||
}
|
||||
};
|
||||
self.conv1d_state = Some(padded);
|
||||
x_branch
|
||||
.apply(&self.conv_1d)?
|
||||
.narrow(D::Minus1, 0, seq_len)?
|
||||
} else {
|
||||
let conv_state = match self.conv1d_state.as_ref() {
|
||||
None => candle::bail!("empty cache despite pos > 0"),
|
||||
Some(s) => Tensor::cat(&[s, &x_branch], D::Minus1)?,
|
||||
};
|
||||
let w = self.conv_1d.weight().i((.., 0, ..))?;
|
||||
let x_branch = conv_state.broadcast_mul(&w)?.sum(D::Minus1)?;
|
||||
let x_branch = match self.conv_1d.bias() {
|
||||
None => x_branch,
|
||||
Some(b) => x_branch.broadcast_add(b)?,
|
||||
};
|
||||
let x_branch = x_branch.unsqueeze(D::Minus1)?;
|
||||
self.conv1d_state = Some(conv_state.i((.., .., 1..))?);
|
||||
x_branch
|
||||
};
|
||||
let x_branch = x_branch.transpose(1, 2)?;
|
||||
let x_branch = self.rg_lru.forward(&x_branch, pos)?;
|
||||
(x_branch * y_branch)?.apply(&self.linear_out)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct SdpaAttention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
n_heads: usize,
|
||||
n_kv_heads: usize,
|
||||
head_dim: usize,
|
||||
hidden_size: usize,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
}
|
||||
|
||||
impl SdpaAttention {
|
||||
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let n_heads = cfg.num_attention_heads;
|
||||
let n_kv_heads = cfg.num_key_value_heads;
|
||||
let hd = cfg.head_dim;
|
||||
let q_proj = linear(h, n_heads * hd, cfg.attention_bias, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(h, n_kv_heads * hd, cfg.attention_bias, vb.pp("v_proj"))?;
|
||||
let o_proj = linear(n_heads * hd, h, true, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
head_dim: hd,
|
||||
hidden_size: h,
|
||||
kv_cache: None,
|
||||
rotary_emb,
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_heads / self.n_kv_heads;
|
||||
crate::utils::repeat_kv(x, n_rep)
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (bsz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let query_states = xs.apply(&self.q_proj)?;
|
||||
let key_states = xs.apply(&self.k_proj)?;
|
||||
let value_states = xs.apply(&self.v_proj)?;
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((bsz, q_len, self.n_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((bsz, q_len, self.n_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let query_states = query_states.chunk(2, D::Minus1)?;
|
||||
let key_states = key_states.chunk(2, D::Minus1)?;
|
||||
let (query_rot, key_rot) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states[0], &key_states[0], pos)?;
|
||||
let query_states = Tensor::cat(&[&query_rot, &query_states[1]], D::Minus1)?.contiguous()?;
|
||||
let key_states = Tensor::cat(&[&key_rot, &key_states[1]], D::Minus1)?.contiguous()?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = self.repeat_kv(key_states)?;
|
||||
let value_states = self.repeat_kv(value_states)?;
|
||||
let xs = {
|
||||
let att = (query_states.matmul(&key_states.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = if q_len == 1 {
|
||||
att
|
||||
} else {
|
||||
match attention_mask {
|
||||
None => att,
|
||||
Some(mask) => att.broadcast_add(mask)?,
|
||||
}
|
||||
};
|
||||
let att = candle_nn::ops::softmax_last_dim(&att)?;
|
||||
att.matmul(&value_states.contiguous()?)?
|
||||
};
|
||||
|
||||
let xs = xs
|
||||
.transpose(1, 2)?
|
||||
.reshape((bsz, q_len, self.hidden_size))?;
|
||||
self.o_proj.forward(&xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
enum TemporalBlock {
|
||||
Recurrent(RecurrentBlock),
|
||||
Attention(SdpaAttention),
|
||||
}
|
||||
|
||||
impl TemporalBlock {
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::Recurrent(b) => b.forward(xs, pos),
|
||||
Self::Attention(b) => b.forward(xs, attention_mask, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecoderLayer {
|
||||
temporal_pre_norm: RmsNorm,
|
||||
channel_pre_norm: RmsNorm,
|
||||
temporal_block: TemporalBlock,
|
||||
mlp_block: Mlp,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(
|
||||
block_idx: usize,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let h = cfg.hidden_size;
|
||||
let temporal_pre_norm = rms_norm(h, cfg.rms_norm_eps, vb.pp("temporal_pre_norm"))?;
|
||||
let channel_pre_norm = rms_norm(h, cfg.rms_norm_eps, vb.pp("channel_pre_norm"))?;
|
||||
let temporal_block = match cfg.block_types[block_idx % cfg.block_types.len()] {
|
||||
TemporalBlockType::Recurrent => {
|
||||
let block = RecurrentBlock::new(cfg, vb.pp("temporal_block"))?;
|
||||
TemporalBlock::Recurrent(block)
|
||||
}
|
||||
TemporalBlockType::Attention => {
|
||||
let block = SdpaAttention::new(rotary_emb, cfg, vb.pp("temporal_block"))?;
|
||||
TemporalBlock::Attention(block)
|
||||
}
|
||||
};
|
||||
let mlp_block = Mlp::new(cfg, vb.pp("mlp_block"))?;
|
||||
Ok(Self {
|
||||
temporal_pre_norm,
|
||||
channel_pre_norm,
|
||||
temporal_block,
|
||||
mlp_block,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
pos: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = xs.apply(&self.temporal_pre_norm)?;
|
||||
let xs = self.temporal_block.forward(&xs, attention_mask, pos)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.channel_pre_norm)?.apply(&self.mlp_block)?;
|
||||
xs + residual
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
final_norm: RmsNorm,
|
||||
lm_head: Linear,
|
||||
hidden_size: usize,
|
||||
logits_soft_cap: f64,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let embed_tokens = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb.pp("embed_tokens"))?;
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(DType::F32, cfg, vb.device())?);
|
||||
let vb_b = vb.pp("layers");
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
for idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(idx, rotary_emb.clone(), cfg, vb_b.pp(idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let final_norm = rms_norm(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("final_norm"))?;
|
||||
let lm_head = linear(
|
||||
cfg.hidden_size,
|
||||
cfg.vocab_size,
|
||||
false,
|
||||
vb.pp("embed_tokens"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
final_norm,
|
||||
lm_head,
|
||||
hidden_size: cfg.hidden_size,
|
||||
logits_soft_cap: cfg.logits_soft_cap,
|
||||
device: vb.device().clone(),
|
||||
})
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(DType::F32)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
let (b_size, seq_len) = xs.dims2()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, pos)?;
|
||||
Some(mask)
|
||||
};
|
||||
let xs = xs.apply(&self.embed_tokens)?;
|
||||
let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), pos)?;
|
||||
}
|
||||
let logits = xs
|
||||
.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.final_norm)?
|
||||
.apply(&self.lm_head)?;
|
||||
let logits = ((logits / self.logits_soft_cap)?.tanh()? * self.logits_soft_cap)?;
|
||||
Ok(logits)
|
||||
}
|
||||
}
|
@ -40,16 +40,20 @@ fn default_max_seq_len() -> usize {
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RmsNorm {
|
||||
pub(crate) struct RmsNorm {
|
||||
weight: Tensor,
|
||||
eps: f64,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
pub(crate) fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
|
||||
let weight = vb.get(dim, "weight")?;
|
||||
Ok(Self { weight, eps })
|
||||
}
|
||||
|
||||
pub(crate) fn from_weight(weight: Tensor, eps: f64) -> Self {
|
||||
Self { weight, eps }
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for RmsNorm {
|
||||
@ -70,7 +74,7 @@ impl Module for RmsNorm {
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
pub(crate) struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
@ -83,7 +87,7 @@ fn rotate_half(xs: &Tensor) -> Result<Tensor> {
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
pub(crate) fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
if cfg.partial_rotary_factor != 0.5 {
|
||||
candle::bail!("partial-rotary-factor {} <> 0.5", cfg.partial_rotary_factor)
|
||||
}
|
||||
@ -106,7 +110,7 @@ impl RotaryEmbedding {
|
||||
})
|
||||
}
|
||||
|
||||
fn apply_rotary_emb_qkv(
|
||||
pub(crate) fn apply_rotary_emb_qkv(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
@ -156,15 +160,15 @@ impl Module for Mlp {
|
||||
|
||||
// Real-Gated Linear Recurrent Unit
|
||||
#[derive(Debug, Clone)]
|
||||
struct Rglru {
|
||||
recurrent_param: Tensor,
|
||||
input_gate_weight: Tensor,
|
||||
input_gate_bias: Tensor,
|
||||
recurrent_gate_weight: Tensor,
|
||||
recurrent_gate_bias: Tensor,
|
||||
block_width: usize,
|
||||
n_heads: usize,
|
||||
recurrent_states: Option<Tensor>,
|
||||
pub(crate) struct Rglru {
|
||||
pub(crate) recurrent_param: Tensor,
|
||||
pub(crate) input_gate_weight: Tensor,
|
||||
pub(crate) input_gate_bias: Tensor,
|
||||
pub(crate) recurrent_gate_weight: Tensor,
|
||||
pub(crate) recurrent_gate_bias: Tensor,
|
||||
pub(crate) block_width: usize,
|
||||
pub(crate) n_heads: usize,
|
||||
pub(crate) recurrent_states: Option<Tensor>,
|
||||
}
|
||||
|
||||
fn baddbmm(a: &Tensor, b: &Tensor, c: &Tensor) -> Result<Tensor> {
|
||||
@ -200,7 +204,7 @@ impl Rglru {
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/0bd58f1ce0573c0e3269de4215a17d318add49b9/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py#L303
|
||||
pub fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
pub(crate) fn forward(&mut self, xs: &Tensor, pos: usize) -> Result<Tensor> {
|
||||
let (b_sz, seq_len, lru_width) = xs.dims3()?;
|
||||
let pos = Tensor::arange(pos as u32, (pos + seq_len) as u32, xs.device())?;
|
||||
let reset = pos.eq(0u32)?.unsqueeze(1)?.unsqueeze(0)?;
|
||||
@ -237,7 +241,7 @@ impl Rglru {
|
||||
reset.broadcast_add(&((1.0 - &reset)?.broadcast_mul(&(1.0 - a_square)?.sqrt()?))?)?;
|
||||
let normalized_x = (gated_inputs * multiplier.to_dtype(xs.dtype()))?;
|
||||
|
||||
let (hidden_states, recurrent_states) = self.rnn_scan(
|
||||
let (hidden_states, recurrent_states) = rnn_scan(
|
||||
&normalized_x,
|
||||
&recurrent_gate,
|
||||
&reset,
|
||||
@ -246,54 +250,53 @@ impl Rglru {
|
||||
self.recurrent_states = Some(recurrent_states);
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
fn rnn_scan(
|
||||
&self,
|
||||
hidden_states: &Tensor,
|
||||
recurrent_gate: &Tensor,
|
||||
reset: &Tensor,
|
||||
recurrent_states: Option<&Tensor>,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let acc_dtype = DType::F32;
|
||||
let dev = hidden_states.device();
|
||||
let in_dtype = hidden_states.dtype();
|
||||
let inv_reset = (1.0 - reset)?.to_dtype(recurrent_gate.dtype())?;
|
||||
let recurrent_gate = recurrent_gate.broadcast_mul(&inv_reset)?;
|
||||
let (c, r) = if hidden_states.dim(1)? == 1 {
|
||||
match recurrent_states {
|
||||
None => {
|
||||
let next_state = hidden_states.i((.., 0))?.to_dtype(acc_dtype)?;
|
||||
(hidden_states.clone(), next_state)
|
||||
}
|
||||
Some(recurrent_states) => {
|
||||
let contextualized_states =
|
||||
recurrent_gate.to_dtype(acc_dtype)? * recurrent_states.unsqueeze(1)?;
|
||||
let contextualized_states =
|
||||
(contextualized_states + hidden_states.to_dtype(acc_dtype)?)?;
|
||||
let c = contextualized_states.to_dtype(in_dtype)?;
|
||||
let l = contextualized_states.dim(1)?;
|
||||
let r = contextualized_states.i((.., l - 1))?;
|
||||
(c, r)
|
||||
}
|
||||
fn rnn_scan(
|
||||
hidden_states: &Tensor,
|
||||
recurrent_gate: &Tensor,
|
||||
reset: &Tensor,
|
||||
recurrent_states: Option<&Tensor>,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let acc_dtype = DType::F32;
|
||||
let dev = hidden_states.device();
|
||||
let in_dtype = hidden_states.dtype();
|
||||
let inv_reset = (1.0 - reset)?.to_dtype(recurrent_gate.dtype())?;
|
||||
let recurrent_gate = recurrent_gate.broadcast_mul(&inv_reset)?;
|
||||
let (c, r) = if hidden_states.dim(1)? == 1 {
|
||||
match recurrent_states {
|
||||
None => {
|
||||
let next_state = hidden_states.i((.., 0))?.to_dtype(acc_dtype)?;
|
||||
(hidden_states.clone(), next_state)
|
||||
}
|
||||
} else {
|
||||
let mut recurrent_states = match recurrent_states {
|
||||
None => Tensor::zeros(hidden_states.i((.., 0))?.shape(), acc_dtype, dev)?,
|
||||
Some(r) => r.clone(),
|
||||
};
|
||||
let mut contextualized_states = vec![];
|
||||
for t in 0..hidden_states.dim(1)? {
|
||||
recurrent_states =
|
||||
(recurrent_gate.i((.., t))?.to_dtype(acc_dtype)? * recurrent_states)?;
|
||||
recurrent_states =
|
||||
(recurrent_states + hidden_states.i((.., t))?.to_dtype(acc_dtype)?)?;
|
||||
contextualized_states.push(recurrent_states.to_dtype(in_dtype)?)
|
||||
Some(recurrent_states) => {
|
||||
let contextualized_states =
|
||||
recurrent_gate.to_dtype(acc_dtype)? * recurrent_states.unsqueeze(1)?;
|
||||
let contextualized_states =
|
||||
(contextualized_states + hidden_states.to_dtype(acc_dtype)?)?;
|
||||
let c = contextualized_states.to_dtype(in_dtype)?;
|
||||
let l = contextualized_states.dim(1)?;
|
||||
let r = contextualized_states.i((.., l - 1))?;
|
||||
(c, r)
|
||||
}
|
||||
let contextualized_states = Tensor::stack(&contextualized_states, 1)?;
|
||||
(contextualized_states, recurrent_states)
|
||||
}
|
||||
} else {
|
||||
let mut recurrent_states = match recurrent_states {
|
||||
None => Tensor::zeros(hidden_states.i((.., 0))?.shape(), acc_dtype, dev)?,
|
||||
Some(r) => r.clone(),
|
||||
};
|
||||
Ok((c, r))
|
||||
}
|
||||
let mut contextualized_states = vec![];
|
||||
for t in 0..hidden_states.dim(1)? {
|
||||
recurrent_states =
|
||||
(recurrent_gate.i((.., t))?.to_dtype(acc_dtype)? * recurrent_states)?;
|
||||
recurrent_states =
|
||||
(recurrent_states + hidden_states.i((.., t))?.to_dtype(acc_dtype)?)?;
|
||||
contextualized_states.push(recurrent_states.to_dtype(in_dtype)?)
|
||||
}
|
||||
let contextualized_states = Tensor::stack(&contextualized_states, 1)?;
|
||||
(contextualized_states, recurrent_states)
|
||||
};
|
||||
Ok((c, r))
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
|
@ -63,7 +63,7 @@ impl VarBuilder {
|
||||
let path = self.path(name);
|
||||
match self.data.get(&path) {
|
||||
None => {
|
||||
candle::bail!("cannot find tensor {name}")
|
||||
candle::bail!("cannot find tensor {path}")
|
||||
}
|
||||
Some(qtensor) => {
|
||||
let shape = s.into();
|
||||
|
Reference in New Issue
Block a user