mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Move the test-utils bits to a shared place. (#619)
This commit is contained in:
@ -63,6 +63,7 @@ pub mod shape;
|
||||
mod storage;
|
||||
mod strided_index;
|
||||
mod tensor;
|
||||
pub mod test_utils;
|
||||
pub mod utils;
|
||||
mod variable;
|
||||
|
||||
|
@ -1,9 +1,4 @@
|
||||
#![allow(dead_code)]
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle_core::{Result, Tensor};
|
||||
use crate::{Result, Tensor};
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! test_device {
|
||||
@ -23,6 +18,12 @@ macro_rules! test_device {
|
||||
};
|
||||
}
|
||||
|
||||
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec0::<f32>()?;
|
||||
Ok(f32::round(t * b) / b)
|
||||
}
|
||||
|
||||
pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec1::<f32>()?;
|
||||
@ -40,7 +41,7 @@ pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> {
|
||||
Ok(t)
|
||||
}
|
||||
|
||||
pub fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
|
||||
pub fn to_vec3_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec3::<f32>()?;
|
||||
let t = t
|
@ -1,6 +1,5 @@
|
||||
mod test_utils;
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, Tensor};
|
||||
use candle_core::{test_device, test_utils, Device, Tensor};
|
||||
|
||||
/* This test is based on the following script.
|
||||
import torch
|
||||
|
@ -1,10 +1,8 @@
|
||||
use candle_core::backend::BackendStorage;
|
||||
use candle_core::cpu_backend;
|
||||
use candle_core::test_utils::to_vec1_round;
|
||||
use candle_core::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor};
|
||||
|
||||
mod test_utils;
|
||||
use test_utils::to_vec1_round;
|
||||
|
||||
fn fwd<T: num_traits::Float>(v: T, alpha: f64) -> T {
|
||||
if v.is_sign_positive() {
|
||||
v
|
||||
|
@ -1,6 +1,5 @@
|
||||
use anyhow::{Context, Result};
|
||||
use candle_core::{Device, Shape, Tensor, Var};
|
||||
mod test_utils;
|
||||
use candle_core::{test_device, test_utils, Device, Shape, Tensor, Var};
|
||||
|
||||
fn simple_grad(device: &Device) -> Result<()> {
|
||||
let x = Var::new(&[3f32, 1., 4.], device)?;
|
||||
|
@ -1,8 +1,6 @@
|
||||
use anyhow::Result;
|
||||
use candle_core::{Device, IndexOp, Tensor};
|
||||
|
||||
mod test_utils;
|
||||
|
||||
#[test]
|
||||
fn integer_index() -> Result<()> {
|
||||
let dev = Device::Cpu;
|
||||
|
@ -1,5 +1,4 @@
|
||||
mod test_utils;
|
||||
use candle::{Device, IndexOp, Result, Tensor};
|
||||
use candle::{test_device, Device, IndexOp, Result, Tensor};
|
||||
use candle_core as candle;
|
||||
|
||||
fn contiguous(device: &Device) -> Result<()> {
|
||||
|
@ -1,5 +1,4 @@
|
||||
mod test_utils;
|
||||
use candle_core::{Device, IndexOp, Result, Tensor};
|
||||
use candle_core::{test_device, test_utils, Device, IndexOp, Result, Tensor};
|
||||
|
||||
// https://github.com/huggingface/candle/issues/364
|
||||
fn avg_pool2d(dev: &Device) -> Result<()> {
|
||||
@ -56,14 +55,17 @@ fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
|
||||
.reshape((1, 2, 4, 4))?;
|
||||
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(pool, 4)?,
|
||||
test_utils::to_vec3_round(&pool, 4)?,
|
||||
[
|
||||
[[-1.1926, -0.0395], [0.2688, 0.1871]],
|
||||
[[0.1835, -0.1606], [0.6249, 0.3217]]
|
||||
]
|
||||
);
|
||||
let pool = t.avg_pool2d((3, 3), (3, 3))?.squeeze(0)?;
|
||||
assert_eq!(test_utils::to_vec3_round(pool, 4)?, [[[0.085]], [[0.0078]]]);
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(&pool, 4)?,
|
||||
[[[0.085]], [[0.0078]]]
|
||||
);
|
||||
|
||||
let t = t.reshape((1, 1, 4, 8))?;
|
||||
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
|
||||
|
@ -1,11 +1,10 @@
|
||||
use candle_core::{
|
||||
quantized::{self, GgmlDType},
|
||||
test_utils::to_vec2_round,
|
||||
Device, Result, Tensor,
|
||||
};
|
||||
use quantized::{k_quants, GgmlType};
|
||||
mod test_utils;
|
||||
use rand::prelude::*;
|
||||
use test_utils::to_vec2_round;
|
||||
|
||||
const GGML_TEST_SIZE: usize = 32 * 128;
|
||||
|
||||
|
@ -1,5 +1,4 @@
|
||||
mod test_utils;
|
||||
use candle_core::{DType, Device, IndexOp, Result, Tensor};
|
||||
use candle_core::{test_device, DType, Device, IndexOp, Result, Tensor};
|
||||
|
||||
fn zeros(device: &Device) -> Result<()> {
|
||||
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
|
||||
|
@ -4,10 +4,8 @@ extern crate intel_mkl_src;
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod test_utils;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle::{test_utils, DType, Device, Tensor};
|
||||
use candle_nn::BatchNorm;
|
||||
|
||||
/* The test below has been generated using the following PyTorch code:
|
||||
|
@ -25,10 +25,9 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::test_utils::to_vec3_round;
|
||||
use candle::{Device, Tensor};
|
||||
use candle_nn::{GroupNorm, Module};
|
||||
mod test_utils;
|
||||
use test_utils::to_vec3_round;
|
||||
|
||||
#[test]
|
||||
fn group_norm() -> Result<()> {
|
||||
@ -60,7 +59,7 @@ fn group_norm() -> Result<()> {
|
||||
device,
|
||||
)?;
|
||||
assert_eq!(
|
||||
to_vec3_round(gn2.forward(&input)?, 4)?,
|
||||
to_vec3_round(&gn2.forward(&input)?, 4)?,
|
||||
&[
|
||||
[
|
||||
[-0.1653, 0.3748, -0.7866],
|
||||
@ -81,7 +80,7 @@ fn group_norm() -> Result<()> {
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
to_vec3_round(gn3.forward(&input)?, 4)?,
|
||||
to_vec3_round(&gn3.forward(&input)?, 4)?,
|
||||
&[
|
||||
[
|
||||
[0.4560, 1.4014, -0.6313],
|
||||
|
@ -5,11 +5,9 @@ extern crate intel_mkl_src;
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{Device, Tensor};
|
||||
use candle::{test_utils, Device, Tensor};
|
||||
use candle_nn::{LayerNorm, Module};
|
||||
|
||||
mod test_utils;
|
||||
|
||||
#[test]
|
||||
fn layer_norm() -> Result<()> {
|
||||
let device = &Device::Cpu;
|
||||
@ -28,7 +26,7 @@ fn layer_norm() -> Result<()> {
|
||||
let inp = Tensor::new(&[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], device)?;
|
||||
let res = ln.forward(&inp)?;
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(res.clone(), 4)?,
|
||||
test_utils::to_vec3_round(&res, 4)?,
|
||||
[[
|
||||
[-3.1742, 0.5, 4.1742],
|
||||
[-3.1742, 0.5, 4.1742],
|
||||
@ -41,7 +39,7 @@ fn layer_norm() -> Result<()> {
|
||||
let std = (res.broadcast_sub(&mean)?.sqr()?.sum_keepdim(2)?.sqrt()? / 3.0)?;
|
||||
// The standard deviation should be sqrt(`w`).
|
||||
assert_eq!(
|
||||
test_utils::to_vec3_round(std, 4)?,
|
||||
test_utils::to_vec3_round(&std, 4)?,
|
||||
[[[1.7321], [1.7321], [1.7321]]]
|
||||
);
|
||||
Ok(())
|
||||
|
@ -4,9 +4,8 @@ extern crate intel_mkl_src;
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::test_utils::to_vec0_round;
|
||||
use candle::{Device, Result, Tensor};
|
||||
mod test_utils;
|
||||
use test_utils::to_vec0_round;
|
||||
|
||||
/* Equivalent python code:
|
||||
import torch
|
||||
|
@ -4,10 +4,7 @@ extern crate intel_mkl_src;
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod test_utils;
|
||||
use test_utils::to_vec3_round;
|
||||
|
||||
use candle::{Device, Result, Tensor};
|
||||
use candle::{test_utils::to_vec3_round, Device, Result, Tensor};
|
||||
|
||||
#[test]
|
||||
fn softmax() -> Result<()> {
|
||||
@ -18,7 +15,7 @@ fn softmax() -> Result<()> {
|
||||
let t1 = candle_nn::ops::softmax(&tensor.log()?, 1)?;
|
||||
let t2 = candle_nn::ops::softmax(&tensor.log()?, 2)?;
|
||||
assert_eq!(
|
||||
to_vec3_round(t0, 4)?,
|
||||
to_vec3_round(&t0, 4)?,
|
||||
&[
|
||||
// 3/5, 1/2, 4/11
|
||||
[[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]],
|
||||
@ -27,7 +24,7 @@ fn softmax() -> Result<()> {
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
to_vec3_round(t1, 4)?,
|
||||
to_vec3_round(&t1, 4)?,
|
||||
&[
|
||||
// 3/4, 1/6, 4/13
|
||||
[[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]],
|
||||
@ -36,7 +33,7 @@ fn softmax() -> Result<()> {
|
||||
]
|
||||
);
|
||||
assert_eq!(
|
||||
to_vec3_round(t2, 4)?,
|
||||
to_vec3_round(&t2, 4)?,
|
||||
&[
|
||||
// (3, 1, 4) / 8, (1, 5, 9) / 15
|
||||
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
|
||||
|
@ -4,8 +4,7 @@ extern crate intel_mkl_src;
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
mod test_utils;
|
||||
use test_utils::{to_vec0_round, to_vec2_round};
|
||||
use candle::test_utils::{to_vec0_round, to_vec2_round};
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{Device, Tensor, Var};
|
||||
|
@ -1,39 +0,0 @@
|
||||
#![allow(dead_code)]
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec0::<f32>()?;
|
||||
Ok(f32::round(t * b) / b)
|
||||
}
|
||||
|
||||
pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec1::<f32>()?;
|
||||
let t = t.iter().map(|t| f32::round(t * b) / b).collect();
|
||||
Ok(t)
|
||||
}
|
||||
|
||||
pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec2::<f32>()?;
|
||||
let t = t
|
||||
.iter()
|
||||
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
|
||||
.collect();
|
||||
Ok(t)
|
||||
}
|
||||
|
||||
pub fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
|
||||
let b = 10f32.powi(digits);
|
||||
let t = t.to_vec3::<f32>()?;
|
||||
let t = t
|
||||
.iter()
|
||||
.map(|t| {
|
||||
t.iter()
|
||||
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
|
||||
.collect()
|
||||
})
|
||||
.collect();
|
||||
Ok(t)
|
||||
}
|
Reference in New Issue
Block a user