Update the Phi model to use the updated architecture. (#1580)

* Update the Phi model to use the updated architecture.

* Add more of the phi model.

* Repeat KV + caching.

* Apply the rotary embeddings.

* Add support for the new phi model in the phi example.

* Fix a couple glitches.

* Fix a couple more glitches.
This commit is contained in:
Laurent Mazare
2024-01-13 17:38:27 +01:00
committed by GitHub
parent a46864bd56
commit 539ead927a
4 changed files with 402 additions and 11 deletions

View File

@ -8,6 +8,7 @@ use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
use candle::{DType, Device, Tensor};
@ -18,6 +19,7 @@ use tokenizers::Tokenizer;
enum Model {
MixFormer(MixFormer),
Phi(Phi),
Quantized(QMixFormer),
}
@ -84,6 +86,7 @@ impl TextGeneration {
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = match &mut self.model {
Model::MixFormer(m) => m.forward(&input)?,
Model::Phi(m) => m.forward(&input)?,
Model::Quantized(m) => m.forward(&input)?,
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
@ -117,7 +120,7 @@ impl TextGeneration {
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
enum WhichModel {
#[value(name = "1")]
V1,
@ -125,6 +128,9 @@ enum WhichModel {
V1_5,
#[value(name = "2")]
V2,
// TODO: Make this the default once it has been battle tested.
#[value(name = "2-new")]
V2New,
PuffinPhiV2,
PhiHermes,
}
@ -230,7 +236,7 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => "microsoft/phi-1".to_string(),
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
WhichModel::V2 => "microsoft/phi-2".to_string(),
WhichModel::V2 | WhichModel::V2New => "microsoft/phi-2".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"lmz/candle-quantized-phi".to_string()
}
@ -248,7 +254,9 @@ fn main() -> Result<()> {
WhichModel::V1 => "refs/pr/2".to_string(),
WhichModel::V1_5 => "refs/pr/18".to_string(),
WhichModel::V2 => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => "main".to_string(),
WhichModel::V2New | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"main".to_string()
}
}
}
}
@ -257,7 +265,9 @@ fn main() -> Result<()> {
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => match args.model {
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => repo.get("tokenizer.json")?,
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2New => {
repo.get("tokenizer.json")?
}
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
repo.get("tokenizer-puffin-phi-v2.json")?
}
@ -270,14 +280,14 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => vec![repo.get("model-v1-q4k.gguf")?],
WhichModel::V1_5 => vec![repo.get("model-q4k.gguf")?],
WhichModel::V2 => vec![repo.get("model-v2-q4k.gguf")?],
WhichModel::V2 | WhichModel::V2New => vec![repo.get("model-v2-q4k.gguf")?],
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
}
} else {
match args.model {
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
WhichModel::V2 => candle_examples::hub_load_safetensors(
WhichModel::V2 | WhichModel::V2New => candle_examples::hub_load_safetensors(
&repo,
"model.safetensors.index.json",
)?,
@ -291,25 +301,35 @@ fn main() -> Result<()> {
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = match args.model {
let config = || match args.model {
WhichModel::V1 => Config::v1(),
WhichModel::V1_5 => Config::v1_5(),
WhichModel::V2 => Config::v2(),
WhichModel::V2 | WhichModel::V2New => Config::v2(),
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
};
let (model, device) = if args.quantized {
let (model, device) = if args.model == WhichModel::V2New {
let device = candle_examples::device(args.cpu)?;
let config_filename = repo.get("config.json")?;
let config = std::fs::read_to_string(config_filename)?;
let config: PhiConfig = serde_json::from_str(&config)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let phi = Phi::new(&config, vb)?;
(Model::Phi(phi), device)
} else if args.quantized {
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filenames[0])?;
let config = config();
let model = match args.model {
WhichModel::V2 => QMixFormer::new_v2(&config, vb)?,
WhichModel::V2 | WhichModel::V2New => QMixFormer::new_v2(&config, vb)?,
_ => QMixFormer::new(&config, vb)?,
};
(Model::Quantized(model), Device::Cpu)
} else {
let device = candle_examples::device(args.cpu)?;
let config = config();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = match args.model {
WhichModel::V2 => MixFormer::new_v2(&config, vb)?,
WhichModel::V2 | WhichModel::V2New => MixFormer::new_v2(&config, vb)?,
_ => MixFormer::new(&config, vb)?,
};
(Model::MixFormer(model), device)
@ -392,6 +412,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
m.clear_kv_cache();
m.forward(&input)?
}
Model::Phi(m) => {
m.clear_kv_cache();
m.forward(&input)?
}
Model::Quantized(m) => {
m.clear_kv_cache();
m.forward(&input)?

View File

@ -6,6 +6,7 @@ use serde::Deserialize;
pub enum Activation {
#[default]
Gelu,
#[serde(alias = "gelu_new")]
NewGelu,
Relu,
Relu2,

View File

@ -17,6 +17,7 @@ pub mod mixformer;
pub mod mixtral;
pub mod mpt;
pub mod persimmon;
pub mod phi;
pub mod quantized_blip;
pub mod quantized_blip_text;
pub mod quantized_llama;

View File

@ -0,0 +1,365 @@
use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear};
/// Phi model.
/// https://huggingface.co/microsoft/phi-2
/// There is an alternative implementation of the phi model in mixformers.rs.
/// This corresponds to the model update made with the following commit:
/// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
use serde::Deserialize;
// https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
pub(crate) vocab_size: usize,
pub(crate) hidden_size: usize,
pub(crate) intermediate_size: usize,
pub(crate) num_hidden_layers: usize,
pub(crate) num_attention_heads: usize,
pub(crate) num_key_value_heads: Option<usize>,
pub(crate) hidden_act: Activation,
pub(crate) max_position_embeddings: usize,
pub(crate) layer_norm_eps: f64,
pub(crate) tie_word_embeddings: bool,
pub(crate) rope_theta: f32,
pub(crate) partial_rotary_factor: f64,
pub(crate) qk_layernorm: bool,
}
impl Config {
fn num_key_value_heads(&self) -> usize {
self.num_key_value_heads.unwrap_or(self.num_attention_heads)
}
fn head_dim(&self) -> usize {
self.hidden_size / self.num_attention_heads
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(cfg: &Config, dev: &Device) -> Result<Self> {
let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)?
.to_dtype(DType::F32)?
.reshape((cfg.max_position_embeddings, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
})
}
fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (_b_size, seqlen, _, _headdim) = xs.dims4()?;
let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
let rotary_dim = rotary_dim * 2;
let xs_rot = xs.i((.., .., .., ..rotary_dim))?;
let xs_pass = xs.i((.., .., .., rotary_dim..))?;
let xs12 = xs_rot.chunk(2, D::Minus1)?;
let (xs1, xs2) = (&xs12[0], &xs12[1]);
let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
let xs_rot = Tensor::cat(
&[
(xs1.broadcast_mul(&c)? - xs2.broadcast_mul(&s)?)?,
(xs1.broadcast_mul(&s)? + xs2.broadcast_mul(&c)?)?,
],
D::Minus1,
)?;
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
}
}
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
fc1: Linear,
fc2: Linear,
act: Activation,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
Ok(Self {
fc1,
fc2,
act: cfg.hidden_act,
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
}
}
#[derive(Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
dense: Linear,
kv_cache: Option<(Tensor, Tensor)>,
q_layernorm: Option<LayerNorm>,
k_layernorm: Option<LayerNorm>,
rotary_emb: RotaryEmbedding,
softmax_scale: f64,
num_heads: usize,
num_kv_heads: usize,
head_dim: usize,
span: tracing::Span,
}
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
impl Attention {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads();
let head_dim = cfg.head_dim();
let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?;
let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?;
let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?;
let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?;
// Alternative rope scalings are not supported.
let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?;
let (q_layernorm, k_layernorm) = if cfg.qk_layernorm {
let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?;
let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?;
(Some(q_layernorm), Some(k_layernorm))
} else {
(None, None)
};
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
Ok(Self {
q_proj,
k_proj,
v_proj,
dense,
kv_cache: None,
q_layernorm,
k_layernorm,
rotary_emb,
softmax_scale,
num_heads,
num_kv_heads,
head_dim,
span: tracing::span!(tracing::Level::TRACE, "attention"),
})
}
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
let n_rep = self.num_heads / self.num_kv_heads;
if n_rep == 1 {
Ok(xs)
} else {
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
xs.unsqueeze(2)?
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
}
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_size, seq_len, _n_embd) = xs.dims3()?;
let query_states = self.q_proj.forward(xs)?;
let key_states = self.k_proj.forward(xs)?;
let value_states = self.v_proj.forward(xs)?;
let query_states = match &self.q_layernorm {
None => query_states,
Some(ln) => query_states.apply(ln)?,
};
let key_states = match &self.k_layernorm {
None => key_states,
Some(ln) => key_states.apply(ln)?,
};
let query_states = query_states
.reshape((b_size, seq_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let key_states = key_states
.reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let value_states = value_states
.reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
// Rotary embeddings.
let seqlen_offset = match &self.kv_cache {
None => 0,
Some((prev_k, _)) => prev_k.dim(1)?,
};
let query_states = self
.rotary_emb
.apply_rotary_emb(&query_states, seqlen_offset)?;
let key_states = self
.rotary_emb
.apply_rotary_emb(&key_states, seqlen_offset)?;
// KV cache.
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let k = Tensor::cat(&[prev_k, &key_states], 2)?;
let v = Tensor::cat(&[prev_v, &value_states], 2)?;
(k, v)
}
};
self.kv_cache = Some((key_states.clone(), value_states.clone()));
// Repeat kv.
let key_states = self.repeat_kv(key_states)?.contiguous()?;
let value_states = self.repeat_kv(value_states)?.contiguous()?;
let attn_weights = (query_states
.to_dtype(DType::F32)?
.contiguous()?
.matmul(&key_states.to_dtype(DType::F32)?.t()?)?
* self.softmax_scale)?;
let attn_weights = match mask {
None => attn_weights,
Some(mask) => masked_fill(
&attn_weights,
&mask.broadcast_left((b_size, self.num_heads))?,
f32::NEG_INFINITY,
)?,
};
let attn_weights =
candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?;
let attn_output = attn_weights.matmul(&value_states)?;
let attn_output = attn_output
.transpose(1, 2)?
.reshape((b_size, seq_len, ()))?;
attn_output.apply(&self.dense)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Clone)]
struct DecoderLayer {
self_attn: Attention,
mlp: MLP,
input_layernorm: LayerNorm,
span: tracing::Span,
}
impl DecoderLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let input_layernorm = layer_norm(
cfg.hidden_size,
cfg.layer_norm_eps,
vb.pp("input_layernorm"),
)?;
Ok(Self {
self_attn,
mlp,
input_layernorm,
span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let residual = xs;
let xs = xs.apply(&self.input_layernorm)?;
let attn_outputs = self.self_attn.forward(&xs, mask)?;
let feed_forward_hidden_states = self.mlp.forward(&xs)?;
attn_outputs + feed_forward_hidden_states + residual
}
fn clear_kv_cache(&mut self) {
self.self_attn.clear_kv_cache()
}
}
#[derive(Clone)]
pub struct Model {
embed_tokens: Embedding,
layers: Vec<DecoderLayer>,
final_layernorm: LayerNorm,
lm_head: Linear,
span: tracing::Span,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
let final_layernorm = layer_norm(
cfg.hidden_size,
cfg.layer_norm_eps,
vb_m.pp("final_layernorm"),
)?;
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_m = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?;
layers.push(layer)
}
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
Ok(Self {
embed_tokens,
layers,
final_layernorm,
lm_head,
span: tracing::span!(tracing::Level::TRACE, "model"),
})
}
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.embed_tokens)?;
let mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, mask.as_ref())?
}
xs.apply(&self.final_layernorm)?
.narrow(1, seq_len - 1, 1)?
.apply(&self.lm_head)?
.squeeze(1)
}
pub fn clear_kv_cache(&mut self) {
self.layers.iter_mut().for_each(|b| b.clear_kv_cache())
}
}