mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 11:56:45 +00:00
Update the Phi model to use the updated architecture. (#1580)
* Update the Phi model to use the updated architecture. * Add more of the phi model. * Repeat KV + caching. * Apply the rotary embeddings. * Add support for the new phi model in the phi example. * Fix a couple glitches. * Fix a couple more glitches.
This commit is contained in:
365
candle-transformers/src/models/phi.rs
Normal file
365
candle-transformers/src/models/phi.rs
Normal file
@ -0,0 +1,365 @@
|
||||
use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear};
|
||||
/// Phi model.
|
||||
/// https://huggingface.co/microsoft/phi-2
|
||||
/// There is an alternative implementation of the phi model in mixformers.rs.
|
||||
/// This corresponds to the model update made with the following commit:
|
||||
/// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use candle_nn::{Activation, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
|
||||
// https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py
|
||||
#[derive(Debug, Clone, PartialEq, Deserialize)]
|
||||
pub struct Config {
|
||||
pub(crate) vocab_size: usize,
|
||||
pub(crate) hidden_size: usize,
|
||||
pub(crate) intermediate_size: usize,
|
||||
pub(crate) num_hidden_layers: usize,
|
||||
pub(crate) num_attention_heads: usize,
|
||||
pub(crate) num_key_value_heads: Option<usize>,
|
||||
pub(crate) hidden_act: Activation,
|
||||
pub(crate) max_position_embeddings: usize,
|
||||
pub(crate) layer_norm_eps: f64,
|
||||
pub(crate) tie_word_embeddings: bool,
|
||||
pub(crate) rope_theta: f32,
|
||||
pub(crate) partial_rotary_factor: f64,
|
||||
pub(crate) qk_layernorm: bool,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn num_key_value_heads(&self) -> usize {
|
||||
self.num_key_value_heads.unwrap_or(self.num_attention_heads)
|
||||
}
|
||||
|
||||
fn head_dim(&self) -> usize {
|
||||
self.hidden_size / self.num_attention_heads
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(cfg: &Config, dev: &Device) -> Result<Self> {
|
||||
let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize;
|
||||
let inv_freq: Vec<_> = (0..dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32))
|
||||
.collect();
|
||||
let inv_freq_len = inv_freq.len();
|
||||
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
|
||||
let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((cfg.max_position_embeddings, 1))?;
|
||||
let freqs = t.matmul(&inv_freq)?;
|
||||
Ok(Self {
|
||||
sin: freqs.sin()?,
|
||||
cos: freqs.cos()?,
|
||||
})
|
||||
}
|
||||
|
||||
fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (_b_size, seqlen, _, _headdim) = xs.dims4()?;
|
||||
let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
|
||||
let rotary_dim = rotary_dim * 2;
|
||||
let xs_rot = xs.i((.., .., .., ..rotary_dim))?;
|
||||
let xs_pass = xs.i((.., .., .., rotary_dim..))?;
|
||||
let xs12 = xs_rot.chunk(2, D::Minus1)?;
|
||||
let (xs1, xs2) = (&xs12[0], &xs12[1]);
|
||||
let c = self.cos.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
|
||||
let s = self.sin.narrow(0, seqlen_offset, seqlen)?.unsqueeze(1)?;
|
||||
let xs_rot = Tensor::cat(
|
||||
&[
|
||||
(xs1.broadcast_mul(&c)? - xs2.broadcast_mul(&s)?)?,
|
||||
(xs1.broadcast_mul(&s)? + xs2.broadcast_mul(&c)?)?,
|
||||
],
|
||||
D::Minus1,
|
||||
)?;
|
||||
Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
struct MLP {
|
||||
fc1: Linear,
|
||||
fc2: Linear,
|
||||
act: Activation,
|
||||
}
|
||||
|
||||
impl MLP {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
|
||||
let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
|
||||
Ok(Self {
|
||||
fc1,
|
||||
fc2,
|
||||
act: cfg.hidden_act,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for MLP {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct Attention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
dense: Linear,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
q_layernorm: Option<LayerNorm>,
|
||||
k_layernorm: Option<LayerNorm>,
|
||||
rotary_emb: RotaryEmbedding,
|
||||
softmax_scale: f64,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
head_dim: usize,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..size)
|
||||
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size, size), device)
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||
let m = mask.where_cond(&on_true, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let num_heads = cfg.num_attention_heads;
|
||||
let num_kv_heads = cfg.num_key_value_heads();
|
||||
let head_dim = cfg.head_dim();
|
||||
let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?;
|
||||
let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?;
|
||||
// Alternative rope scalings are not supported.
|
||||
let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?;
|
||||
let (q_layernorm, k_layernorm) = if cfg.qk_layernorm {
|
||||
let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?;
|
||||
let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?;
|
||||
(Some(q_layernorm), Some(k_layernorm))
|
||||
} else {
|
||||
(None, None)
|
||||
};
|
||||
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
dense,
|
||||
kv_cache: None,
|
||||
q_layernorm,
|
||||
k_layernorm,
|
||||
rotary_emb,
|
||||
softmax_scale,
|
||||
num_heads,
|
||||
num_kv_heads,
|
||||
head_dim,
|
||||
span: tracing::span!(tracing::Level::TRACE, "attention"),
|
||||
})
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.num_heads / self.num_kv_heads;
|
||||
if n_rep == 1 {
|
||||
Ok(xs)
|
||||
} else {
|
||||
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
|
||||
xs.unsqueeze(2)?
|
||||
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b_size, seq_len, _n_embd) = xs.dims3()?;
|
||||
let query_states = self.q_proj.forward(xs)?;
|
||||
let key_states = self.k_proj.forward(xs)?;
|
||||
let value_states = self.v_proj.forward(xs)?;
|
||||
|
||||
let query_states = match &self.q_layernorm {
|
||||
None => query_states,
|
||||
Some(ln) => query_states.apply(ln)?,
|
||||
};
|
||||
let key_states = match &self.k_layernorm {
|
||||
None => key_states,
|
||||
Some(ln) => key_states.apply(ln)?,
|
||||
};
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((b_size, seq_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let key_states = key_states
|
||||
.reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let value_states = value_states
|
||||
.reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
// Rotary embeddings.
|
||||
let seqlen_offset = match &self.kv_cache {
|
||||
None => 0,
|
||||
Some((prev_k, _)) => prev_k.dim(1)?,
|
||||
};
|
||||
let query_states = self
|
||||
.rotary_emb
|
||||
.apply_rotary_emb(&query_states, seqlen_offset)?;
|
||||
let key_states = self
|
||||
.rotary_emb
|
||||
.apply_rotary_emb(&key_states, seqlen_offset)?;
|
||||
|
||||
// KV cache.
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let k = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let v = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(k, v)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
// Repeat kv.
|
||||
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||
|
||||
let attn_weights = (query_states
|
||||
.to_dtype(DType::F32)?
|
||||
.contiguous()?
|
||||
.matmul(&key_states.to_dtype(DType::F32)?.t()?)?
|
||||
* self.softmax_scale)?;
|
||||
let attn_weights = match mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => masked_fill(
|
||||
&attn_weights,
|
||||
&mask.broadcast_left((b_size, self.num_heads))?,
|
||||
f32::NEG_INFINITY,
|
||||
)?,
|
||||
};
|
||||
let attn_weights =
|
||||
candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?;
|
||||
let attn_output = attn_weights.matmul(&value_states)?;
|
||||
let attn_output = attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_size, seq_len, ()))?;
|
||||
attn_output.apply(&self.dense)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
mlp: MLP,
|
||||
input_layernorm: LayerNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
|
||||
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
|
||||
let input_layernorm = layer_norm(
|
||||
cfg.hidden_size,
|
||||
cfg.layer_norm_eps,
|
||||
vb.pp("input_layernorm"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
mlp,
|
||||
input_layernorm,
|
||||
span: tracing::span!(tracing::Level::TRACE, "block"),
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let residual = xs;
|
||||
let xs = xs.apply(&self.input_layernorm)?;
|
||||
let attn_outputs = self.self_attn.forward(&xs, mask)?;
|
||||
let feed_forward_hidden_states = self.mlp.forward(&xs)?;
|
||||
attn_outputs + feed_forward_hidden_states + residual
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.self_attn.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Model {
|
||||
embed_tokens: Embedding,
|
||||
layers: Vec<DecoderLayer>,
|
||||
final_layernorm: LayerNorm,
|
||||
lm_head: Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_m = vb.pp("model");
|
||||
let embed_tokens =
|
||||
Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||
let final_layernorm = layer_norm(
|
||||
cfg.hidden_size,
|
||||
cfg.layer_norm_eps,
|
||||
vb_m.pp("final_layernorm"),
|
||||
)?;
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_m = vb_m.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
layers,
|
||||
final_layernorm,
|
||||
lm_head,
|
||||
span: tracing::span!(tracing::Level::TRACE, "model"),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (_b_size, seq_len) = xs.dims2()?;
|
||||
let mut xs = xs.apply(&self.embed_tokens)?;
|
||||
let mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
Some(get_mask(seq_len, xs.device())?)
|
||||
};
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, mask.as_ref())?
|
||||
}
|
||||
xs.apply(&self.final_layernorm)?
|
||||
.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.lm_head)?
|
||||
.squeeze(1)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.layers.iter_mut().for_each(|b| b.clear_kv_cache())
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user