mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
parler-tts support (#2431)
* Start sketching parler-tts support. * Implement the attention. * Add the example code. * Fix the example. * Add the description + t5 encode it. * More of the parler forward pass. * Fix the positional embeddings. * Support random sampling in generation. * Handle EOS. * Add the python decoder. * Proper causality mask.
This commit is contained in:
29
candle-examples/examples/parler-tts/decode.py
Normal file
29
candle-examples/examples/parler-tts/decode.py
Normal file
@ -0,0 +1,29 @@
|
||||
import torch
|
||||
import torchaudio
|
||||
from safetensors.torch import load_file
|
||||
from parler_tts import DACModel
|
||||
|
||||
tensors = load_file("out.safetensors")
|
||||
dac_model = DACModel.from_pretrained("parler-tts/dac_44khZ_8kbps")
|
||||
output_ids = tensors["codes"][None, None]
|
||||
print(output_ids, "\n", output_ids.shape)
|
||||
batch_size = 1
|
||||
with torch.no_grad():
|
||||
output_values = []
|
||||
for sample_id in range(batch_size):
|
||||
sample = output_ids[:, sample_id]
|
||||
sample_mask = (sample >= dac_model.config.codebook_size).sum(dim=(0, 1)) == 0
|
||||
if sample_mask.sum() > 0:
|
||||
sample = sample[:, :, sample_mask]
|
||||
sample = dac_model.decode(sample[None, ...], [None]).audio_values
|
||||
output_values.append(sample.transpose(0, 2))
|
||||
else:
|
||||
output_values.append(torch.zeros((1, 1, 1)).to(dac_model.device))
|
||||
output_lengths = [audio.shape[0] for audio in output_values]
|
||||
pcm = (
|
||||
torch.nn.utils.rnn.pad_sequence(output_values, batch_first=True, padding_value=0)
|
||||
.squeeze(-1)
|
||||
.squeeze(-1)
|
||||
)
|
||||
print(pcm.shape, pcm.dtype)
|
||||
torchaudio.save("out.wav", pcm.cpu(), sample_rate=44100)
|
Reference in New Issue
Block a user