mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 02:16:37 +00:00
parler-tts support (#2431)
* Start sketching parler-tts support. * Implement the attention. * Add the example code. * Fix the example. * Add the description + t5 encode it. * More of the parler forward pass. * Fix the positional embeddings. * Support random sampling in generation. * Handle EOS. * Add the python decoder. * Proper causality mask.
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@ -41,3 +41,4 @@ candle-wasm-examples/**/config*.json
|
||||
.DS_Store
|
||||
.idea/*
|
||||
__pycache__
|
||||
out.safetensors
|
||||
|
29
candle-examples/examples/parler-tts/decode.py
Normal file
29
candle-examples/examples/parler-tts/decode.py
Normal file
@ -0,0 +1,29 @@
|
||||
import torch
|
||||
import torchaudio
|
||||
from safetensors.torch import load_file
|
||||
from parler_tts import DACModel
|
||||
|
||||
tensors = load_file("out.safetensors")
|
||||
dac_model = DACModel.from_pretrained("parler-tts/dac_44khZ_8kbps")
|
||||
output_ids = tensors["codes"][None, None]
|
||||
print(output_ids, "\n", output_ids.shape)
|
||||
batch_size = 1
|
||||
with torch.no_grad():
|
||||
output_values = []
|
||||
for sample_id in range(batch_size):
|
||||
sample = output_ids[:, sample_id]
|
||||
sample_mask = (sample >= dac_model.config.codebook_size).sum(dim=(0, 1)) == 0
|
||||
if sample_mask.sum() > 0:
|
||||
sample = sample[:, :, sample_mask]
|
||||
sample = dac_model.decode(sample[None, ...], [None]).audio_values
|
||||
output_values.append(sample.transpose(0, 2))
|
||||
else:
|
||||
output_values.append(torch.zeros((1, 1, 1)).to(dac_model.device))
|
||||
output_lengths = [audio.shape[0] for audio in output_values]
|
||||
pcm = (
|
||||
torch.nn.utils.rnn.pad_sequence(output_values, batch_first=True, padding_value=0)
|
||||
.squeeze(-1)
|
||||
.squeeze(-1)
|
||||
)
|
||||
print(pcm.shape, pcm.dtype)
|
||||
torchaudio.save("out.wav", pcm.cpu(), sample_rate=44100)
|
175
candle-examples/examples/parler-tts/main.rs
Normal file
175
candle-examples/examples/parler-tts/main.rs
Normal file
@ -0,0 +1,175 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::Error as E;
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::models::parler_tts::{Config, Model};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long, default_value = "Hey, how are you doing today?")]
|
||||
prompt: String,
|
||||
|
||||
#[arg(
|
||||
long,
|
||||
default_value = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
||||
)]
|
||||
description: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 0)]
|
||||
seed: u64,
|
||||
|
||||
#[arg(long, default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
quantized: bool,
|
||||
|
||||
/// Use f16 precision for all the computations rather than f32.
|
||||
#[arg(long)]
|
||||
f16: bool,
|
||||
|
||||
#[arg(long)]
|
||||
model_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long, default_value_t = 512)]
|
||||
max_steps: usize,
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature, args.repeat_penalty, args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "parler-tts/parler-tts-large-v1".to_string(),
|
||||
};
|
||||
let revision = match args.revision {
|
||||
Some(r) => r,
|
||||
None => "main".to_string(),
|
||||
};
|
||||
let repo = api.repo(hf_hub::Repo::with_revision(
|
||||
model_id,
|
||||
hf_hub::RepoType::Model,
|
||||
revision,
|
||||
));
|
||||
let model_files = match args.model_file {
|
||||
Some(m) => vec![m.into()],
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
let config = match args.config_file {
|
||||
Some(m) => m.into(),
|
||||
None => repo.get("config.json")?,
|
||||
};
|
||||
let tokenizer = match args.tokenizer_file {
|
||||
Some(m) => m.into(),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&model_files, DType::F32, &device)? };
|
||||
let config: Config = serde_json::from_reader(std::fs::File::open(config)?)?;
|
||||
let mut model = Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let description_tokens = tokenizer
|
||||
.encode(args.description, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let description_tokens = Tensor::new(description_tokens, &device)?.unsqueeze(0)?;
|
||||
println!("{description_tokens}");
|
||||
|
||||
let prompt_tokens = tokenizer
|
||||
.encode(args.prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let prompt_tokens = Tensor::new(prompt_tokens, &device)?.unsqueeze(0)?;
|
||||
println!("{prompt_tokens}");
|
||||
|
||||
let lp = candle_transformers::generation::LogitsProcessor::new(
|
||||
args.seed,
|
||||
Some(args.temperature),
|
||||
args.top_p,
|
||||
);
|
||||
let codes = model.generate(&prompt_tokens, &description_tokens, lp, args.max_steps)?;
|
||||
println!("{codes}");
|
||||
let codes = codes.to_dtype(DType::I64)?;
|
||||
codes.save_safetensors("codes", "out.safetensors")?;
|
||||
Ok(())
|
||||
}
|
@ -40,6 +40,7 @@ pub mod mobileone;
|
||||
pub mod moondream;
|
||||
pub mod mpt;
|
||||
pub mod olmo;
|
||||
pub mod parler_tts;
|
||||
pub mod persimmon;
|
||||
pub mod phi;
|
||||
pub mod phi3;
|
||||
|
452
candle-transformers/src/models/parler_tts.rs
Normal file
452
candle-transformers/src/models/parler_tts.rs
Normal file
@ -0,0 +1,452 @@
|
||||
use crate::generation::LogitsProcessor;
|
||||
use crate::models::t5;
|
||||
use candle::{IndexOp, Result, Tensor};
|
||||
use candle_nn::{layer_norm, linear_b as linear, Activation, LayerNorm, Linear, VarBuilder};
|
||||
|
||||
#[derive(serde::Deserialize, Debug, Clone)]
|
||||
pub struct DecoderConfig {
|
||||
pub vocab_size: usize,
|
||||
pub max_position_embeddings: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub ffn_dim: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: Option<usize>,
|
||||
pub num_cross_attention_key_value_heads: Option<usize>,
|
||||
pub activation_function: Activation,
|
||||
pub hidden_size: usize,
|
||||
pub scale_embedding: bool,
|
||||
pub num_codebooks: usize,
|
||||
pub pad_token_id: usize,
|
||||
pub bos_token_id: usize,
|
||||
pub eos_token_id: usize,
|
||||
pub tie_word_embeddings: bool,
|
||||
pub rope_embeddings: bool,
|
||||
pub rope_theta: f64,
|
||||
}
|
||||
|
||||
#[derive(serde::Deserialize, Debug, Clone)]
|
||||
pub struct Config {
|
||||
pub decoder_start_token_id: u32,
|
||||
pub pad_token_id: u32,
|
||||
pub decoder: DecoderConfig,
|
||||
pub text_encoder: t5::Config,
|
||||
pub vocab_size: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Attention {
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
q_proj: Linear,
|
||||
out_proj: Linear,
|
||||
is_causal: bool,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
scaling: f64,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
head_dim: usize,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(
|
||||
num_kv_heads: usize,
|
||||
is_causal: bool,
|
||||
cfg: &DecoderConfig,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
if cfg.rope_embeddings {
|
||||
candle::bail!("rope embeddings are not supported");
|
||||
}
|
||||
let embed_dim = cfg.hidden_size;
|
||||
let head_dim = embed_dim / cfg.num_attention_heads;
|
||||
let kv_out_dim = num_kv_heads * head_dim;
|
||||
let k_proj = linear(embed_dim, kv_out_dim, false, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(embed_dim, kv_out_dim, false, vb.pp("v_proj"))?;
|
||||
let q_proj = linear(embed_dim, embed_dim, false, vb.pp("q_proj"))?;
|
||||
let out_proj = linear(embed_dim, embed_dim, false, vb.pp("out_proj"))?;
|
||||
Ok(Self {
|
||||
k_proj,
|
||||
v_proj,
|
||||
q_proj,
|
||||
out_proj,
|
||||
is_causal,
|
||||
kv_cache: None,
|
||||
scaling: (head_dim as f64).powf(-0.5),
|
||||
num_heads: cfg.num_attention_heads,
|
||||
num_kv_heads,
|
||||
num_kv_groups: cfg.num_attention_heads / num_kv_heads,
|
||||
head_dim,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
key_value_states: Option<&Tensor>,
|
||||
attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let (b_sz, tgt_len, _) = xs.dims3()?;
|
||||
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?
|
||||
.reshape((b_sz, tgt_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let key_states = match key_value_states {
|
||||
Some(states) => states.apply(&self.k_proj)?,
|
||||
None => xs.apply(&self.k_proj)?,
|
||||
};
|
||||
let key_states = key_states
|
||||
.reshape((b_sz, (), self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let value_states = match key_value_states {
|
||||
Some(states) => states.apply(&self.v_proj)?,
|
||||
None => xs.apply(&self.v_proj)?,
|
||||
};
|
||||
let value_states = value_states
|
||||
.reshape((b_sz, (), self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
if self.is_causal {
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
}
|
||||
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||
let value_states =
|
||||
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||
|
||||
let attn_weights = query_states.matmul(&key_states.transpose(2, 3)?)?;
|
||||
let attn_weights = match attention_mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||
};
|
||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||
let attn_output = attn_weights.matmul(&value_states)?;
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_sz, tgt_len, ()))?
|
||||
.apply(&self.out_proj)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DecoderLayer {
|
||||
self_attn: Attention,
|
||||
self_attn_layer_norm: LayerNorm,
|
||||
encoder_attn: Attention,
|
||||
encoder_attn_layer_norm: LayerNorm,
|
||||
fc1: Linear,
|
||||
fc2: Linear,
|
||||
final_layer_norm: LayerNorm,
|
||||
activation: Activation,
|
||||
}
|
||||
|
||||
impl DecoderLayer {
|
||||
fn new(cfg: &DecoderConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let kv_heads = cfg.num_key_value_heads.unwrap_or(cfg.num_attention_heads);
|
||||
let kv_heads_cross = cfg.num_cross_attention_key_value_heads.unwrap_or(kv_heads);
|
||||
|
||||
let self_attn = Attention::new(kv_heads, true, cfg, vb.pp("self_attn"))?;
|
||||
let encoder_attn = Attention::new(kv_heads_cross, false, cfg, vb.pp("encoder_attn"))?;
|
||||
let self_attn_layer_norm =
|
||||
layer_norm(cfg.hidden_size, 1e-5, vb.pp("self_attn_layer_norm"))?;
|
||||
let encoder_attn_layer_norm =
|
||||
layer_norm(cfg.hidden_size, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
|
||||
let fc1 = linear(cfg.hidden_size, cfg.ffn_dim, false, vb.pp("fc1"))?;
|
||||
let fc2 = linear(cfg.ffn_dim, cfg.hidden_size, false, vb.pp("fc2"))?;
|
||||
let final_layer_norm = layer_norm(cfg.hidden_size, 1e-5, vb.pp("final_layer_norm"))?;
|
||||
Ok(Self {
|
||||
self_attn,
|
||||
self_attn_layer_norm,
|
||||
encoder_attn,
|
||||
encoder_attn_layer_norm,
|
||||
fc1,
|
||||
fc2,
|
||||
final_layer_norm,
|
||||
activation: cfg.activation_function,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
encoder_xs: &Tensor,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
// Self attention
|
||||
let residual = xs;
|
||||
let xs = xs.apply(&self.self_attn_layer_norm)?;
|
||||
let xs = self.self_attn.forward(&xs, None, attention_mask)?;
|
||||
let xs = (residual + xs)?;
|
||||
|
||||
// Cross attention
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.encoder_attn_layer_norm)?;
|
||||
let xs = self
|
||||
.encoder_attn
|
||||
.forward(&xs, Some(encoder_xs), encoder_attention_mask)?;
|
||||
let xs = (residual + xs)?;
|
||||
|
||||
// Fully connected
|
||||
let residual = &xs;
|
||||
let xs = xs
|
||||
.apply(&self.final_layer_norm)?
|
||||
.apply(&self.fc1)?
|
||||
.apply(&self.activation)?
|
||||
.apply(&self.fc2)?;
|
||||
residual + xs
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.self_attn.clear_kv_cache();
|
||||
self.encoder_attn.clear_kv_cache();
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Decoder {
|
||||
embed_tokens: Vec<candle_nn::Embedding>,
|
||||
embed_positions: Tensor,
|
||||
layers: Vec<DecoderLayer>,
|
||||
layer_norm: LayerNorm,
|
||||
num_codebooks: usize,
|
||||
hidden_size: usize,
|
||||
lm_heads: Vec<Linear>,
|
||||
dtype: candle::DType,
|
||||
}
|
||||
|
||||
impl Decoder {
|
||||
pub fn new(cfg: &DecoderConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let vb_d = vb.pp("model.decoder");
|
||||
let mut embed_tokens = Vec::with_capacity(cfg.num_codebooks);
|
||||
let vb_e = vb_d.pp("embed_tokens");
|
||||
for embed_idx in 0..cfg.num_codebooks {
|
||||
let e = candle_nn::embedding(cfg.vocab_size + 1, cfg.hidden_size, vb_e.pp(embed_idx))?;
|
||||
embed_tokens.push(e)
|
||||
}
|
||||
let embed_positions = vb_d.get(
|
||||
(cfg.max_position_embeddings, cfg.hidden_size),
|
||||
"embed_positions.weights",
|
||||
)?;
|
||||
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||
let vb_l = vb_d.pp("layers");
|
||||
for layer_idx in 0..cfg.num_hidden_layers {
|
||||
let layer = DecoderLayer::new(cfg, vb_l.pp(layer_idx))?;
|
||||
layers.push(layer)
|
||||
}
|
||||
let layer_norm = layer_norm(cfg.hidden_size, 1e-5, vb_d.pp("layer_norm"))?;
|
||||
|
||||
let mut lm_heads = Vec::with_capacity(cfg.num_codebooks);
|
||||
let vb_l = vb.pp("lm_heads");
|
||||
for lm_idx in 0..cfg.num_codebooks {
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb_l.pp(lm_idx))?;
|
||||
lm_heads.push(lm_head)
|
||||
}
|
||||
Ok(Self {
|
||||
embed_tokens,
|
||||
embed_positions,
|
||||
layers,
|
||||
layer_norm,
|
||||
num_codebooks: cfg.num_codebooks,
|
||||
lm_heads,
|
||||
hidden_size: cfg.hidden_size,
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&mut self,
|
||||
input_ids: &Tensor,
|
||||
prompt_hidden_states: Option<&Tensor>,
|
||||
attention_mask: Option<&Tensor>,
|
||||
encoder_xs: &Tensor,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Vec<Tensor>> {
|
||||
let (b_sz, num_codebooks, seq_len) = input_ids.dims3()?;
|
||||
if num_codebooks != self.num_codebooks {
|
||||
candle::bail!("unexpected num codebooks in input {:?}", input_ids.shape())
|
||||
}
|
||||
let mut inputs_embeds = Tensor::zeros(
|
||||
(b_sz, seq_len, self.hidden_size),
|
||||
self.dtype,
|
||||
input_ids.device(),
|
||||
)?;
|
||||
for (idx, embs) in self.embed_tokens.iter().enumerate() {
|
||||
let e = input_ids.i((.., idx))?.apply(embs)?;
|
||||
inputs_embeds = (inputs_embeds + e)?
|
||||
}
|
||||
let inputs_embeds = match prompt_hidden_states {
|
||||
None => inputs_embeds,
|
||||
Some(pis) => Tensor::cat(&[pis, &inputs_embeds], 1)?,
|
||||
};
|
||||
let embed_positions = self
|
||||
.embed_positions
|
||||
.i(seqlen_offset..seqlen_offset + inputs_embeds.dim(1)?)?;
|
||||
let mut xs = (inputs_embeds + embed_positions.unsqueeze(0))?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask, encoder_xs, encoder_attention_mask)?;
|
||||
}
|
||||
let xs = xs.apply(&self.layer_norm)?;
|
||||
let mut lm_logits = Vec::with_capacity(self.num_codebooks);
|
||||
for lm_head in self.lm_heads.iter() {
|
||||
let logits = xs.apply(lm_head)?;
|
||||
lm_logits.push(logits)
|
||||
}
|
||||
Ok(lm_logits)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
pub embed_prompts: candle_nn::Embedding,
|
||||
pub enc_to_dec_proj: Option<Linear>,
|
||||
pub decoder: Decoder,
|
||||
pub text_encoder: t5::T5EncoderModel,
|
||||
pub decoder_start_token_id: u32,
|
||||
pub pad_token_id: u32,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let text_encoder = t5::T5EncoderModel::load(vb.pp("text_encoder"), &cfg.text_encoder)?;
|
||||
let decoder = Decoder::new(&cfg.decoder, vb.pp("decoder"))?;
|
||||
let embed_prompts = candle_nn::embedding(
|
||||
cfg.vocab_size,
|
||||
cfg.decoder.hidden_size,
|
||||
vb.pp("embed_prompts"),
|
||||
)?;
|
||||
let enc_to_dec_proj = if cfg.text_encoder.d_model != cfg.decoder.hidden_size {
|
||||
let proj = linear(
|
||||
cfg.text_encoder.d_model,
|
||||
cfg.decoder.hidden_size,
|
||||
true,
|
||||
vb.pp("enc_to_dec_proj"),
|
||||
)?;
|
||||
Some(proj)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Ok(Self {
|
||||
decoder,
|
||||
text_encoder,
|
||||
embed_prompts,
|
||||
enc_to_dec_proj,
|
||||
decoder_start_token_id: cfg.decoder_start_token_id,
|
||||
pad_token_id: cfg.pad_token_id,
|
||||
})
|
||||
}
|
||||
|
||||
/// Note that the returned tensor uses the CPU device.
|
||||
pub fn generate(
|
||||
&mut self,
|
||||
prompt_tokens: &Tensor,
|
||||
description_tokens: &Tensor,
|
||||
mut lp: LogitsProcessor,
|
||||
max_steps: usize,
|
||||
) -> Result<Tensor> {
|
||||
self.decoder.clear_kv_cache();
|
||||
self.text_encoder.clear_kv_cache();
|
||||
let encoded = self.text_encoder.forward(description_tokens)?;
|
||||
let encoded = match self.enc_to_dec_proj.as_ref() {
|
||||
None => encoded,
|
||||
Some(proj) => encoded.apply(proj)?,
|
||||
};
|
||||
let prompt_hidden_states = prompt_tokens.apply(&self.embed_prompts)?;
|
||||
let num_codebooks = self.decoder.num_codebooks;
|
||||
let mut audio_tokens = vec![self.decoder_start_token_id; num_codebooks];
|
||||
let mut all_audio_tokens = vec![vec![]; num_codebooks];
|
||||
let prompt_len = prompt_hidden_states.dim(1)?;
|
||||
for step in 0..max_steps {
|
||||
let input_ids = Tensor::from_slice(
|
||||
audio_tokens.as_slice(),
|
||||
(1, num_codebooks, 1),
|
||||
prompt_tokens.device(),
|
||||
)?;
|
||||
let (prompt_hidden_states, pos) = if step == 0 {
|
||||
(Some(&prompt_hidden_states), 0)
|
||||
} else {
|
||||
(None, step + prompt_len)
|
||||
};
|
||||
let causal_mask = if pos == 0 {
|
||||
self.prepare_causal_mask(prompt_len + 1, prompt_len + 1, input_ids.device())?
|
||||
} else {
|
||||
self.prepare_causal_mask(1, pos + 1, input_ids.device())?
|
||||
};
|
||||
let logits = self.decoder.forward(
|
||||
&input_ids,
|
||||
prompt_hidden_states,
|
||||
Some(&causal_mask),
|
||||
&encoded,
|
||||
None,
|
||||
pos,
|
||||
)?;
|
||||
for (logit_idx, logit) in logits.iter().enumerate() {
|
||||
if logit_idx > step {
|
||||
break;
|
||||
}
|
||||
if audio_tokens[logit_idx] != self.pad_token_id {
|
||||
let logit = logit.i((0, logit.dim(1)? - 1))?;
|
||||
let token = lp.sample(&logit)?;
|
||||
audio_tokens[logit_idx] = token
|
||||
}
|
||||
}
|
||||
if audio_tokens.iter().all(|v| v == &self.pad_token_id) {
|
||||
break;
|
||||
}
|
||||
for (cb_idx, &token) in audio_tokens.iter().enumerate() {
|
||||
if token != self.decoder_start_token_id && token != self.pad_token_id {
|
||||
all_audio_tokens[cb_idx].push(token)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let min_len = all_audio_tokens.iter().map(|v| v.len()).min().unwrap_or(0);
|
||||
all_audio_tokens.iter_mut().for_each(|v| {
|
||||
v.resize(min_len, 0);
|
||||
v.push(self.pad_token_id)
|
||||
});
|
||||
let all_audio_tokens = Tensor::new(all_audio_tokens, &candle::Device::Cpu)?;
|
||||
Ok(all_audio_tokens)
|
||||
}
|
||||
|
||||
fn prepare_causal_mask(
|
||||
&self,
|
||||
q_len: usize,
|
||||
kv_len: usize,
|
||||
device: &candle::Device,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..q_len)
|
||||
.flat_map(|i| {
|
||||
(0..kv_len).map(move |j| {
|
||||
if i + kv_len < j + q_len {
|
||||
f32::NEG_INFINITY
|
||||
} else {
|
||||
0.
|
||||
}
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (q_len, kv_len), device)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user