Merge pull request #29 from LaurentMazare/cpu-map

Switch from a macro to a trait to make things more generic.
This commit is contained in:
Laurent Mazare
2023-06-29 05:27:59 +01:00
committed by GitHub
2 changed files with 288 additions and 343 deletions

View File

@ -1,10 +1,8 @@
use crate::op::{BinaryOp, UnaryOp};
use crate::{DType, Error, Layout, Result, Shape};
use crate::{DType, Error, Layout, Result, Shape, WithDType};
use gemm::{gemm, Parallelism};
use half::{bf16, f16};
// TODO: Think about whether we would be better off with a dtype and
// a buffer as an owned slice of bytes.
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
// intercept the oom errors to avoid panicking and provide a proper error.
#[derive(Debug, Clone)]
@ -16,60 +14,111 @@ pub enum CpuStorage {
F64(Vec<f64>),
}
fn wcond<T: Copy>(
pred: &[u32],
layout: &Layout,
t: &[T],
layout_t: &Layout,
f: &[T],
layout_f: &Layout,
) -> Vec<T> {
match (
layout.contiguous_offsets(),
layout_t.contiguous_offsets(),
layout_f.contiguous_offsets(),
) {
(Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
let pred = &pred[o1..o2];
let t = &t[o_t1..o_t2];
let f = &f[o_f1..o_f2];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(&p, (&t, &f))| if p > 0 { t } else { f })
.collect::<Vec<_>>()
trait Map1 {
fn f<T: WithDType + Copy + num_traits::NumAssign>(
&self,
vs: &[T],
layout: &Layout,
) -> Result<Vec<T>>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U32(vs) => Ok(CpuStorage::U32(self.f(vs, layout)?)),
CpuStorage::BF16(vs) => Ok(CpuStorage::BF16(self.f(vs, layout)?)),
CpuStorage::F16(vs) => Ok(CpuStorage::F16(self.f(vs, layout)?)),
CpuStorage::F32(vs) => Ok(CpuStorage::F32(self.f(vs, layout)?)),
CpuStorage::F64(vs) => Ok(CpuStorage::F64(self.f(vs, layout)?)),
}
_ => layout
.strided_index()
.zip(layout_t.strided_index().zip(layout_f.strided_index()))
.map(|(i_p, (i_t, i_f))| if pred[i_p] > 0 { t[i_t] } else { f[i_f] })
.collect::<Vec<_>>(),
}
}
macro_rules! map1 {
($v: expr, $fn: ident, $( $args:expr ),*) => {{
let v = match $v {
CpuStorage::BF16(__s) => CpuStorage::BF16($fn::<bf16>(__s, $($args),*)?),
CpuStorage::F16(__s) => CpuStorage::F16($fn::<f16>(__s, $($args),*)?),
CpuStorage::F32(__s) => CpuStorage::F32($fn::<f32>(__s, $($args),*)?),
CpuStorage::F64(__s) => CpuStorage::F64($fn::<f64>(__s, $($args),*)?),
CpuStorage::U32(__s) => CpuStorage::U32($fn::<u32>(__s, $($args),*)?),
type C = CpuStorage;
trait Map2 {
const OP: &'static str;
fn f<T: WithDType + Copy + num_traits::Num + 'static>(
&self,
v1: &[T],
l1: &Layout,
v2: &[T],
l2: &Layout,
) -> Result<Vec<T>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}),
}
}
}
struct WCond<'a>(&'a [u32], &'a Layout);
impl<'a> Map2 for WCond<'a> {
const OP: &'static str = "where";
fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
let vs = match (
self.1.contiguous_offsets(),
t_l.contiguous_offsets(),
f_l.contiguous_offsets(),
) {
(Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
let pred = &self.0[o1..o2];
let t = &t[o_t1..o_t2];
let f = &f[o_f1..o_f2];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(&p, (&t, &f))| if p > 0 { t } else { f })
.collect::<Vec<_>>()
}
_ => self
.1
.strided_index()
.zip(t_l.strided_index().zip(f_l.strided_index()))
.map(|(i_p, (i_t, i_f))| if self.0[i_p] > 0 { t[i_t] } else { f[i_f] })
.collect::<Vec<_>>(),
};
Ok(v)
}};
Ok(vs)
}
}
fn sum_impl1<T: Copy + num_traits::NumAssign>(
src: &[T],
dst_shape: &Shape,
src_layout: &Layout,
to_dst_index: impl Fn(usize) -> usize,
) -> Result<Vec<T>> {
let mut dst = vec![T::zero(); dst_shape.elem_count()];
for (unstr_index, src_index) in src_layout.strided_index().enumerate() {
dst[to_dst_index(unstr_index)] += src[src_index];
struct Sum<'a> {
dst_shape: &'a Shape,
sum_dims_and_stride: Vec<(usize, usize)>,
}
impl<'a> Map1 for Sum<'a> {
fn f<T: WithDType + Copy + num_traits::NumAssign>(
&self,
src: &[T],
src_layout: &Layout,
) -> Result<Vec<T>> {
let mut dst = vec![T::zero(); self.dst_shape.elem_count()];
for (unstr_index, src_index) in src_layout.strided_index().enumerate() {
let mut dst_index = unstr_index;
// Set the sum_dims indexes to 0.
for &(dim, stride) in self.sum_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src[src_index];
}
Ok(dst)
}
Ok(dst)
}
fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(vs: &[T], layout: &Layout, mut f: F) -> Vec<U> {
@ -101,23 +150,48 @@ fn binary_map<T: Copy, F: FnMut(T, T) -> T>(
}
}
fn take_impl1<T: Copy>(vs: &[T], ids: &[u32], layout: &Layout, rhs_l: &Layout) -> Result<Vec<T>> {
// TODO: Optimize for the case where ids are contiguous.
let (vocab_size, hidden_size) = rhs_l.shape().r2()?;
let mut values = Vec::with_capacity(layout.shape().elem_count() * hidden_size);
for index in layout.strided_index() {
let index = ids[index].try_into()?;
if index >= vocab_size {
return Err(Error::InvalidIndex {
index,
vocab_size,
op: "take",
});
} else {
values.extend(&vs[hidden_size * index..hidden_size * (index + 1)]);
}
struct Affine(f64, f64);
impl Map1 for Affine {
fn f<T: WithDType + Copy + num_traits::NumAssign>(
&self,
vs: &[T],
layout: &Layout,
) -> Result<Vec<T>> {
let mul = T::from_f64(self.0);
let add = T::from_f64(self.1);
Ok(unary_map(vs, layout, |v| v * mul + add))
}
}
struct Embedding<'a> {
vocab_size: usize,
hidden_size: usize,
ids: &'a [u32],
ids_l: &'a Layout,
}
impl<'a> Map1 for Embedding<'a> {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: We assume that vs is contiguous here.
let vs = &vs[layout.start_offset()..];
let mut values = Vec::with_capacity(self.ids_l.shape().elem_count() * self.hidden_size);
// TODO: Optimize for the case where ids are contiguous.
for index in self.ids_l.strided_index() {
let index = self.ids[index].try_into()?;
if index >= self.vocab_size {
return Err(Error::InvalidIndex {
index,
vocab_size: self.vocab_size,
op: "take",
});
} else {
let hidden_size = self.hidden_size;
values.extend(&vs[hidden_size * index..hidden_size * (index + 1)]);
}
}
Ok(values)
}
Ok(values)
}
fn copy_strided_src_<T: Copy + std::fmt::Display>(
@ -143,73 +217,108 @@ fn copy_strided_src_<T: Copy + std::fmt::Display>(
}
}
fn matmul<T: 'static + num_traits::Num + Copy>(
lhs: &[T],
rhs: &[T],
(b, m, n, k): (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Vec<T>> {
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let a_skip: usize = m * k;
let b_skip: usize = n * k;
let c_skip: usize = m * n;
struct MatMul((usize, usize, usize, usize));
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
impl Map2 for MatMul {
const OP: &'static str = "mat_mul";
fn f<T: 'static + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let a_skip: usize = m * k;
let b_skip: usize = n * k;
let c_skip: usize = m * n;
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
if lhs_stride.len() > 2 {
let lhs_batch_stride = &lhs_stride[..rank - 2];
let rhs_batch_stride = &rhs_stride[..rank - 2];
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
if lhs_batch_stride != [a_skip] || rhs_batch_stride != [b_skip] {
// Temporary error before we support abitrary striding.
return Err(Error::UnexpectedStriding);
if lhs_stride.len() > 2 {
let lhs_batch_stride = &lhs_stride[..rank - 2];
let rhs_batch_stride = &rhs_stride[..rank - 2];
if lhs_batch_stride != [a_skip] || rhs_batch_stride != [b_skip] {
// Temporary error before we support abitrary striding.
return Err(Error::UnexpectedStriding);
}
}
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
let mut dst = vec![T::zero(); b * m * n];
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
/* m: usize = */ m,
/* n: usize = */ n,
/* k: usize = */ k,
/* dst: *mut T = */ dst_p.as_mut_ptr(),
/* dst_cs: isize = */ dst_cs as isize,
/* dst_rs: isize = */ dst_rs as isize,
/* read_dst: bool = */ false,
/* lhs: *const T = */ lhs_p.as_ptr(),
/* lhs_cs: isize = */ lhs_cs as isize,
/* lhs_rs: isize = */ lhs_rs as isize,
/* rhs: *const T = */ rhs_p.as_ptr(),
/* rhs_cs: isize = */ rhs_cs as isize,
/* rhs_rs: isize = */ rhs_rs as isize,
/* alpha: T = */ T::zero(),
/* beta: T = */ T::one(),
/* conj_dst: bool = */ false,
/* conj_lhs: bool = */ false,
/* conj_rhs: bool = */ false,
Parallelism::Rayon(crate::utils::get_num_threads()),
)
}
}
Ok(dst)
}
}
fn divide_by_sum_over_dim<T: WithDType + num_traits::NumAssign>(
s: &mut [T],
shape: &Shape,
dim: usize,
) -> Result<()> {
// [self] stores data in a contiguous way starting at offset 0.
let dims = shape.dims();
let elem_per_slice = dims[dim];
let prod_pre_dim = dims[..dim].iter().product();
let prod_post_dim = dims[dim + 1..].iter().product();
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += s[idx].to_f64();
idx += prod_post_dim
}
let sum = T::from_f64(sum);
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
s[idx] /= sum;
idx += prod_post_dim
}
}
}
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
let mut dst = vec![T::zero(); b * m * n];
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
/* m: usize = */ m,
/* n: usize = */ n,
/* k: usize = */ k,
/* dst: *mut T = */ dst_p.as_mut_ptr(),
/* dst_cs: isize = */ dst_cs as isize,
/* dst_rs: isize = */ dst_rs as isize,
/* read_dst: bool = */ false,
/* lhs: *const T = */ lhs_p.as_ptr(),
/* lhs_cs: isize = */ lhs_cs as isize,
/* lhs_rs: isize = */ lhs_rs as isize,
/* rhs: *const T = */ rhs_p.as_ptr(),
/* rhs_cs: isize = */ rhs_cs as isize,
/* rhs_rs: isize = */ rhs_rs as isize,
/* alpha: T = */ T::zero(),
/* beta: T = */ T::one(),
/* conj_dst: bool = */ false,
/* conj_lhs: bool = */ false,
/* conj_rhs: bool = */ false,
Parallelism::Rayon(crate::utils::get_num_threads()),
)
}
}
Ok(dst)
Ok(())
}
impl CpuStorage {
@ -348,135 +457,26 @@ impl CpuStorage {
.iter()
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
.collect();
let to_dst_index = |unstr_index: usize| {
// TODO: Optimize, the following does lots of slow division.
let mut dst_index = unstr_index;
// Set the sum_dims indexes to 0.
for &(dim, stride) in sum_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst_index
};
// TODO: Maybe provide an implementation with higher precision accumulators?
map1!(self, sum_impl1, &dst_shape, layout, to_dst_index)
Sum {
dst_shape: &dst_shape,
sum_dims_and_stride,
}
.map(self, layout)
}
pub(crate) fn divide_by_sum_over_dim(&mut self, shape: &Shape, dim: usize) -> Result<()> {
// [self] stores data in a contiguous way.
let dims = shape.dims();
let elem_per_slice = dims[dim];
let prod_pre_dim = dims[..dim].iter().product();
let prod_post_dim = dims[dim + 1..].iter().product();
// [self] stores data in a contiguous way starting at offset 0.
match self {
Self::BF16(storage) => {
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += storage[idx].to_f64();
idx += prod_post_dim
}
let sum = bf16::from_f64(sum);
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
storage[idx] /= sum;
idx += prod_post_dim
}
}
}
}
Self::F16(storage) => {
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += storage[idx].to_f64();
idx += prod_post_dim
}
let sum = f16::from_f64(sum);
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
storage[idx] /= sum;
idx += prod_post_dim
}
}
}
}
Self::F32(storage) => {
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += storage[idx] as f64;
idx += prod_post_dim
}
let sum = sum as f32;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
storage[idx] /= sum;
idx += prod_post_dim
}
}
}
}
Self::F64(storage) => {
for pre_idx in 0..prod_pre_dim {
for post_idx in 0..prod_post_dim {
let mut sum = 0f64;
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
sum += storage[idx];
idx += prod_post_dim
}
let mut idx = pre_idx * prod_post_dim * elem_per_slice + post_idx;
for _ in 0..elem_per_slice {
storage[idx] /= sum;
idx += prod_post_dim
}
}
}
}
Self::U32(_) => {}
Self::BF16(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F16(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F32(s) => divide_by_sum_over_dim(s, shape, dim),
Self::F64(s) => divide_by_sum_over_dim(s, shape, dim),
Self::U32(_) => Ok(()),
}
Ok(())
}
pub(crate) fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
match self {
Self::U32(storage) => {
let mul = mul as u32;
let add = add as u32;
let data = unary_map(storage, layout, |v| v * mul + add);
Ok(Self::U32(data))
}
Self::BF16(storage) => {
let mul = bf16::from_f64(mul);
let add = bf16::from_f64(add);
let data = unary_map(storage, layout, |v| v * mul + add);
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let mul = f16::from_f64(mul);
let add = f16::from_f64(add);
let data = unary_map(storage, layout, |v| v * mul + add);
Ok(Self::F16(data))
}
Self::F32(storage) => {
let mul = mul as f32;
let add = add as f32;
let data = unary_map(storage, layout, |v| v * mul + add);
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, |v| v * mul + add);
Ok(Self::F64(data))
}
}
Affine(mul, add).map(self, layout)
}
pub(crate) fn unary_impl<B: UnaryOp>(&self, layout: &Layout) -> Result<Self> {
@ -570,44 +570,25 @@ impl CpuStorage {
&self,
layout: &Layout,
t: &Self,
layout_t: &Layout,
t_l: &Layout,
f: &Self,
layout_f: &Layout,
f_l: &Layout,
) -> Result<Self> {
// TODO: Support types that could be casted to a boolean.
let pred = self.as_slice::<u32>()?;
match (t, f) {
(Self::BF16(t), Self::BF16(f)) => {
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::BF16(data))
}
(Self::F16(t), Self::F16(f)) => {
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F16(data))
}
(Self::F32(t), Self::F32(f)) => {
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F32(data))
}
(Self::F64(t), Self::F64(f)) => {
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F64(data))
}
(Self::U32(t), Self::U32(f)) => {
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::U32(data))
}
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: t.dtype(),
rhs: f.dtype(),
op: "where_cond",
}),
}
WCond(pred, layout).map(t, t_l, f, f_l)
}
pub(crate) fn embedding(&self, layout: &Layout, rhs: &Self, rhs_l: &Layout) -> Result<Self> {
pub(crate) fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result<Self> {
let ids = self.as_slice::<u32>()?;
map1!(rhs, take_impl1, ids, layout, rhs_l)
let (vocab_size, hidden_size) = rhs_l.shape().r2()?;
Embedding {
vocab_size,
hidden_size,
ids,
ids_l,
}
.map(rhs, rhs_l)
}
pub(crate) fn matmul(
@ -617,76 +598,28 @@ impl CpuStorage {
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
match (self, rhs) {
(CpuStorage::F16(lhs), CpuStorage::F16(rhs)) => {
let dst = matmul(lhs, rhs, bmnk, lhs_l, rhs_l)?;
Ok(Self::F16(dst))
}
(CpuStorage::F32(lhs), CpuStorage::F32(rhs)) => {
let dst = matmul(lhs, rhs, bmnk, lhs_l, rhs_l)?;
Ok(Self::F32(dst))
}
(CpuStorage::F64(lhs), CpuStorage::F64(rhs)) => {
let dst = matmul(lhs, rhs, bmnk, lhs_l, rhs_l)?;
Ok(Self::F64(dst))
}
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: rhs.dtype(),
op: "matmul",
}),
}
MatMul(bmnk).map(self, lhs_l, rhs, rhs_l)
}
pub(crate) fn ones_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
DType::U32 => {
let data = vec![1u32; elem_count];
Self::U32(data)
}
DType::BF16 => {
let data = vec![bf16::ONE; elem_count];
Self::BF16(data)
}
DType::F16 => {
let data = vec![f16::ONE; elem_count];
Self::F16(data)
}
DType::F32 => {
let data = vec![1f32; elem_count];
Self::F32(data)
}
DType::F64 => {
let data = vec![1f64; elem_count];
Self::F64(data)
}
DType::U32 => Self::U32(vec![1u32; elem_count]),
DType::BF16 => Self::BF16(vec![bf16::ONE; elem_count]),
DType::F16 => Self::F16(vec![f16::ONE; elem_count]),
DType::F32 => Self::F32(vec![1f32; elem_count]),
DType::F64 => Self::F64(vec![1f64; elem_count]),
}
}
pub(crate) fn zeros_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
DType::U32 => {
let data = vec![0u32; elem_count];
Self::U32(data)
}
DType::BF16 => {
let data = vec![bf16::ZERO; elem_count];
Self::BF16(data)
}
DType::F16 => {
let data = vec![f16::ZERO; elem_count];
Self::F16(data)
}
DType::F32 => {
let data = vec![0f32; elem_count];
Self::F32(data)
}
DType::F64 => {
let data = vec![0f64; elem_count];
Self::F64(data)
}
DType::U32 => Self::U32(vec![0u32; elem_count]),
DType::BF16 => Self::BF16(vec![bf16::ZERO; elem_count]),
DType::F16 => Self::F16(vec![f16::ZERO; elem_count]),
DType::F32 => Self::F32(vec![0f32; elem_count]),
DType::F64 => Self::F64(vec![0f64; elem_count]),
}
}
}

View File

@ -34,6 +34,8 @@ impl DType {
pub trait WithDType: Sized + Copy {
const DTYPE: DType;
fn from_f64(v: f64) -> Self;
fn to_f64(self) -> f64;
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage;
fn to_cpu_storage(data: &[Self]) -> CpuStorage {
@ -45,10 +47,18 @@ pub trait WithDType: Sized + Copy {
}
macro_rules! with_dtype {
($ty:ty, $dtype:ident) => {
($ty:ty, $dtype:ident, $from_f64:expr, $to_f64:expr) => {
impl WithDType for $ty {
const DTYPE: DType = DType::$dtype;
fn from_f64(v: f64) -> Self {
$from_f64(v)
}
fn to_f64(self) -> f64 {
$to_f64(self)
}
fn to_cpu_storage_owned(data: Vec<Self>) -> CpuStorage {
CpuStorage::$dtype(data)
}
@ -77,8 +87,10 @@ macro_rules! with_dtype {
}
};
}
with_dtype!(u32, U32);
with_dtype!(half::f16, F16);
with_dtype!(half::bf16, BF16);
with_dtype!(f32, F32);
with_dtype!(f64, F64);
use half::{bf16, f16};
with_dtype!(u32, U32, |v: f64| v as u32, |v: u32| v as f64);
with_dtype!(f16, F16, f16::from_f64, f16::to_f64);
with_dtype!(bf16, BF16, bf16::from_f64, bf16::to_f64);
with_dtype!(f32, F32, |v: f64| v as f32, |v: f32| v as f64);
with_dtype!(f64, F64, |v: f64| v, |v: f64| v);