Use multiple transformer layer in the same cross-attn blocks. (#653)

* Use multiple transformer layer in the same cross-attn blocks.

* Make the context contiguous if required.
This commit is contained in:
Laurent Mazare
2023-08-29 11:13:43 +01:00
committed by GitHub
parent d0a330448d
commit 62ef494dc1
4 changed files with 43 additions and 22 deletions

View File

@ -208,9 +208,9 @@ impl CrossAttention {
fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let query = self.to_q.forward(xs)?;
let context = context.unwrap_or(xs);
let key = self.to_k.forward(context)?;
let value = self.to_v.forward(context)?;
let context = context.unwrap_or(xs).contiguous()?;
let key = self.to_k.forward(&context)?;
let value = self.to_v.forward(&context)?;
let query = self.reshape_heads_to_batch_dim(&query)?;
let key = self.reshape_heads_to_batch_dim(&key)?;
let value = self.reshape_heads_to_batch_dim(&value)?;

View File

@ -28,10 +28,10 @@ impl StableDiffusionConfig {
// https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/unet/config.json
let unet = unet_2d::UNet2DConditionModelConfig {
blocks: vec![
bc(320, true, 8),
bc(640, true, 8),
bc(1280, true, 8),
bc(1280, false, 8),
bc(320, Some(1), 8),
bc(640, Some(1), 8),
bc(1280, Some(1), 8),
bc(1280, None, 8),
],
center_input_sample: false,
cross_attention_dim: 768,
@ -90,10 +90,10 @@ impl StableDiffusionConfig {
// https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/unet/config.json
let unet = unet_2d::UNet2DConditionModelConfig {
blocks: vec![
bc(320, true, 5),
bc(640, true, 10),
bc(1280, true, 20),
bc(1280, false, 20),
bc(320, Some(1), 5),
bc(640, Some(1), 10),
bc(1280, Some(1), 20),
bc(1280, None, 20),
],
center_input_sample: false,
cross_attention_dim: 1024,
@ -171,7 +171,11 @@ impl StableDiffusionConfig {
};
// https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/unet/config.json
let unet = unet_2d::UNet2DConditionModelConfig {
blocks: vec![bc(320, false, 5), bc(640, false, 10), bc(1280, true, 20)],
blocks: vec![
bc(320, None, 5),
bc(640, Some(2), 10),
bc(1280, Some(10), 20),
],
center_input_sample: false,
cross_attention_dim: 2048,
downsample_padding: 1,

View File

@ -12,7 +12,9 @@ use candle_nn::Module;
#[derive(Debug, Clone, Copy)]
pub struct BlockConfig {
pub out_channels: usize,
pub use_cross_attn: bool,
/// When `None` no cross-attn is used, when `Some(d)` then cross-attn is used and `d` is the
/// number of transformer blocks to be used.
pub use_cross_attn: Option<usize>,
pub attention_head_dim: usize,
}
@ -41,22 +43,22 @@ impl Default for UNet2DConditionModelConfig {
blocks: vec![
BlockConfig {
out_channels: 320,
use_cross_attn: true,
use_cross_attn: Some(1),
attention_head_dim: 8,
},
BlockConfig {
out_channels: 640,
use_cross_attn: true,
use_cross_attn: Some(1),
attention_head_dim: 8,
},
BlockConfig {
out_channels: 1280,
use_cross_attn: true,
use_cross_attn: Some(1),
attention_head_dim: 8,
},
BlockConfig {
out_channels: 1280,
use_cross_attn: false,
use_cross_attn: None,
attention_head_dim: 8,
},
],
@ -149,13 +151,14 @@ impl UNet2DConditionModel {
downsample_padding: config.downsample_padding,
..Default::default()
};
if use_cross_attn {
if let Some(transformer_layers_per_block) = use_cross_attn {
let config = CrossAttnDownBlock2DConfig {
downblock: db_cfg,
attn_num_head_channels: attention_head_dim,
cross_attention_dim: config.cross_attention_dim,
sliced_attention_size,
use_linear_projection: config.use_linear_projection,
transformer_layers_per_block,
};
let block = CrossAttnDownBlock2D::new(
vs_db.pp(&i.to_string()),
@ -179,6 +182,11 @@ impl UNet2DConditionModel {
})
.collect::<Result<Vec<_>>>()?;
// https://github.com/huggingface/diffusers/blob/a76f2ad538e73b34d5fe7be08c8eb8ab38c7e90c/src/diffusers/models/unet_2d_condition.py#L462
let mid_transformer_layers_per_block = match config.blocks.last() {
None => 1,
Some(block) => block.use_cross_attn.unwrap_or(1),
};
let mid_cfg = UNetMidBlock2DCrossAttnConfig {
resnet_eps: config.norm_eps,
output_scale_factor: config.mid_block_scale_factor,
@ -186,8 +194,10 @@ impl UNet2DConditionModel {
attn_num_head_channels: bl_attention_head_dim,
resnet_groups: Some(config.norm_num_groups),
use_linear_projection: config.use_linear_projection,
transformer_layers_per_block: mid_transformer_layers_per_block,
..Default::default()
};
let mid_block = UNetMidBlock2DCrossAttn::new(
vs.pp("mid_block"),
bl_channels,
@ -231,13 +241,14 @@ impl UNet2DConditionModel {
add_upsample: i < n_blocks - 1,
..Default::default()
};
if use_cross_attn {
if let Some(transformer_layers_per_block) = use_cross_attn {
let config = CrossAttnUpBlock2DConfig {
upblock: ub_cfg,
attn_num_head_channels: attention_head_dim,
cross_attention_dim: config.cross_attention_dim,
sliced_attention_size,
use_linear_projection: config.use_linear_projection,
transformer_layers_per_block,
};
let block = CrossAttnUpBlock2D::new(
vs_ub.pp(&i.to_string()),

View File

@ -366,6 +366,7 @@ pub struct UNetMidBlock2DCrossAttnConfig {
pub cross_attn_dim: usize,
pub sliced_attention_size: Option<usize>,
pub use_linear_projection: bool,
pub transformer_layers_per_block: usize,
}
impl Default for UNetMidBlock2DCrossAttnConfig {
@ -379,6 +380,7 @@ impl Default for UNetMidBlock2DCrossAttnConfig {
cross_attn_dim: 1280,
sliced_attention_size: None, // Sliced attention disabled
use_linear_projection: false,
transformer_layers_per_block: 1,
}
}
}
@ -414,7 +416,7 @@ impl UNetMidBlock2DCrossAttn {
let resnet = ResnetBlock2D::new(vs_resnets.pp("0"), in_channels, resnet_cfg)?;
let n_heads = config.attn_num_head_channels;
let attn_cfg = SpatialTransformerConfig {
depth: 1,
depth: config.transformer_layers_per_block,
num_groups: resnet_groups,
context_dim: Some(config.cross_attn_dim),
sliced_attention_size: config.sliced_attention_size,
@ -565,6 +567,7 @@ pub struct CrossAttnDownBlock2DConfig {
// attention_type: "default"
pub sliced_attention_size: Option<usize>,
pub use_linear_projection: bool,
pub transformer_layers_per_block: usize,
}
impl Default for CrossAttnDownBlock2DConfig {
@ -575,6 +578,7 @@ impl Default for CrossAttnDownBlock2DConfig {
cross_attention_dim: 1280,
sliced_attention_size: None,
use_linear_projection: false,
transformer_layers_per_block: 1,
}
}
}
@ -605,7 +609,7 @@ impl CrossAttnDownBlock2D {
)?;
let n_heads = config.attn_num_head_channels;
let cfg = SpatialTransformerConfig {
depth: 1,
depth: config.transformer_layers_per_block,
context_dim: Some(config.cross_attention_dim),
num_groups: config.downblock.resnet_groups,
sliced_attention_size: config.sliced_attention_size,
@ -767,6 +771,7 @@ pub struct CrossAttnUpBlock2DConfig {
// attention_type: "default"
pub sliced_attention_size: Option<usize>,
pub use_linear_projection: bool,
pub transformer_layers_per_block: usize,
}
impl Default for CrossAttnUpBlock2DConfig {
@ -777,6 +782,7 @@ impl Default for CrossAttnUpBlock2DConfig {
cross_attention_dim: 1280,
sliced_attention_size: None,
use_linear_projection: false,
transformer_layers_per_block: 1,
}
}
}
@ -809,7 +815,7 @@ impl CrossAttnUpBlock2D {
)?;
let n_heads = config.attn_num_head_channels;
let cfg = SpatialTransformerConfig {
depth: 1,
depth: config.transformer_layers_per_block,
context_dim: Some(config.cross_attention_dim),
num_groups: config.upblock.resnet_groups,
sliced_attention_size: config.sliced_attention_size,