mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add dtype support.
This commit is contained in:
@ -10,6 +10,24 @@ pub enum DType {
|
||||
F64,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct DTypeParseError;
|
||||
|
||||
impl std::str::FromStr for DType {
|
||||
type Err = DTypeParseError;
|
||||
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
|
||||
match s {
|
||||
"u8" => Ok(Self::U8),
|
||||
"u32" => Ok(Self::U32),
|
||||
"bf16" => Ok(Self::BF16),
|
||||
"f16" => Ok(Self::F16),
|
||||
"f32" => Ok(Self::F32),
|
||||
"f64" => Ok(Self::F64),
|
||||
_ => Err(DTypeParseError),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DType {
|
||||
pub fn as_str(&self) -> &'static str {
|
||||
match self {
|
||||
|
@ -1,6 +1,6 @@
|
||||
use pyo3::exceptions::{PyTypeError, PyValueError};
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::types::{PyString, PyTuple};
|
||||
use pyo3::types::PyTuple;
|
||||
|
||||
use half::{bf16, f16};
|
||||
|
||||
@ -22,13 +22,32 @@ impl std::ops::Deref for PyTensor {
|
||||
}
|
||||
}
|
||||
|
||||
trait PyDType: WithDType {
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
struct PyDType(DType);
|
||||
|
||||
impl<'source> FromPyObject<'source> for PyDType {
|
||||
fn extract(ob: &'source PyAny) -> PyResult<Self> {
|
||||
use std::str::FromStr;
|
||||
let dtype: &str = ob.extract()?;
|
||||
let dtype = DType::from_str(dtype)
|
||||
.map_err(|_| PyTypeError::new_err(format!("invalid dtype {dtype}")))?;
|
||||
Ok(Self(dtype))
|
||||
}
|
||||
}
|
||||
|
||||
impl ToPyObject for PyDType {
|
||||
fn to_object(&self, py: Python<'_>) -> PyObject {
|
||||
self.0.as_str().to_object(py)
|
||||
}
|
||||
}
|
||||
|
||||
trait PyWithDType: WithDType {
|
||||
fn to_py(&self, py: Python<'_>) -> PyObject;
|
||||
}
|
||||
|
||||
macro_rules! pydtype {
|
||||
($ty:ty, $conv:expr) => {
|
||||
impl PyDType for $ty {
|
||||
impl PyWithDType for $ty {
|
||||
fn to_py(&self, py: Python<'_>) -> PyObject {
|
||||
$conv(*self).to_object(py)
|
||||
}
|
||||
@ -45,7 +64,7 @@ pydtype!(f64, |v| v);
|
||||
// TODO: Something similar to this should probably be a part of candle core.
|
||||
trait MapDType {
|
||||
type Output;
|
||||
fn f<T: PyDType>(&self, t: &Tensor) -> PyResult<Self::Output>;
|
||||
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output>;
|
||||
|
||||
fn map(&self, t: &Tensor) -> PyResult<Self::Output> {
|
||||
match t.dtype() {
|
||||
@ -83,7 +102,7 @@ impl PyTensor {
|
||||
struct M<'a>(Python<'a>);
|
||||
impl<'a> MapDType for M<'a> {
|
||||
type Output = PyObject;
|
||||
fn f<T: PyDType>(&self, t: &Tensor) -> PyResult<Self::Output> {
|
||||
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output> {
|
||||
match t.rank() {
|
||||
0 => Ok(t.to_scalar::<T>().map_err(wrap_err)?.to_py(self.0)),
|
||||
1 => {
|
||||
@ -133,7 +152,7 @@ impl PyTensor {
|
||||
|
||||
#[getter]
|
||||
fn dtype(&self, py: Python<'_>) -> PyObject {
|
||||
PyString::new(py, self.0.dtype().as_str()).to_object(py)
|
||||
PyDType(self.0.dtype()).to_object(py)
|
||||
}
|
||||
|
||||
#[getter]
|
||||
@ -269,6 +288,10 @@ impl PyTensor {
|
||||
fn copy(&self) -> PyResult<Self> {
|
||||
Ok(PyTensor(self.0.copy().map_err(wrap_err)?))
|
||||
}
|
||||
|
||||
fn to_dtype(&self, dtype: PyDType) -> PyResult<Self> {
|
||||
Ok(PyTensor(self.0.to_dtype(dtype.0).map_err(wrap_err)?))
|
||||
}
|
||||
}
|
||||
|
||||
/// Concatenate the tensors across one axis.
|
||||
|
@ -10,3 +10,4 @@ print(t)
|
||||
print(t+t)
|
||||
t = t.reshape([2, 4])
|
||||
print(t.matmul(t.t()))
|
||||
print(t.to_dtype("u8"))
|
||||
|
Reference in New Issue
Block a user