Marian MT model (#1210)

* Skeleton files for the marian MT model.

* Marian initialization.

* Implement the attention forward method.

* Forward pass for the encoder side.

* Expose the encoder and decoder.

* Start plugging the decoder.

* Forward pass for the decoder layer.

* Set up the marian example.

* Add some missing backtraces.

* Bugfix.
This commit is contained in:
Laurent Mazare
2023-10-29 16:12:22 +01:00
committed by GitHub
parent c3f2676d49
commit 7bbde55c61
5 changed files with 521 additions and 10 deletions

View File

@ -804,11 +804,11 @@ impl<'a, I: IntDType> Map1 for Gather<'a, I> {
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" })?,
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let src = match src_l.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "gather" })?,
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
@ -857,7 +857,7 @@ impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
let src = match layout.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "index-select" })?,
None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
};
let dim = self.dim;
let n_ids = match self.ids_l.dims() {
@ -913,7 +913,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "scatter-add" })?,
None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
@ -929,7 +929,7 @@ impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" })?,
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
for left_i in 0..ids_left_len {
let start_ids_idx = left_i * ids_right_len * ids_dim_len;
@ -971,7 +971,7 @@ impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "index-add" })?,
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
@ -2539,25 +2539,25 @@ impl BackendStorage for CpuStorage {
Self::U8(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" })?,
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::U32(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" })?,
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::I64(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" })?,
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add")),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
}
}

View File

@ -0,0 +1,90 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::Parser;
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::marian;
use tokenizers::Tokenizer;
// TODO: Maybe add support for the conditional prompt.
#[derive(Parser)]
struct Args {
#[arg(long)]
model: String,
#[arg(long)]
tokenizer: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Use the quantized version of the model.
#[arg(long)]
quantized: bool,
/// Text to be translated
#[arg(long)]
text: String,
}
const SEP_TOKEN_ID: u32 = 102;
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let config = marian::Config::opus_mt_tc_big_fr_en();
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[&args.model], DType::F32, &device)? };
let model = marian::MTModel::new(&config, vb)?;
let tokenizer = Tokenizer::from_file(&args.tokenizer).map_err(E::msg)?;
let mut tokenizer_dec = TokenOutputStream::new(tokenizer.clone());
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let encoder_xs = {
let tokens = tokenizer
.encode(args.text, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
model.encoder().forward(&tokens, 0)?
};
let mut token_ids = vec![30522u32];
for index in 0..1000 {
// TODO: Add a kv cache.
let context_size = if index >= 1000 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
if token == SEP_TOKEN_ID {
break;
}
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
Ok(())
}

View File

@ -0,0 +1,413 @@
#![allow(unused)]
use super::with_tracing::{linear, linear_no_bias, Embedding, Linear};
use candle::{Module, Result, Tensor};
use candle_nn::{layer_norm, LayerNorm, VarBuilder};
#[derive(Debug, Clone)]
pub struct Config {
pub vocab_size: usize,
pub decoder_vocab_size: Option<usize>,
pub max_position_embeddings: usize,
pub encoder_layers: usize,
pub encoder_ffn_dim: usize,
pub encoder_attention_heads: usize,
pub decoder_layers: usize,
pub decoder_ffn_dim: usize,
pub decoder_attention_heads: usize,
pub use_cache: bool,
pub is_encoder_decoder: bool,
pub activation_function: candle_nn::Activation,
pub d_model: usize,
pub decoder_start_token_id: usize,
pub scale_embedding: bool,
pub pad_token_id: usize,
pub eos_token_id: usize,
pub forced_eos_token_id: usize,
pub share_encoder_decoder_embeddings: bool,
}
impl Config {
// https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en/blob/main/config.json
pub fn opus_mt_tc_big_fr_en() -> Self {
Self {
activation_function: candle_nn::Activation::Relu,
d_model: 1024,
decoder_attention_heads: 16,
decoder_ffn_dim: 4096,
decoder_layers: 6,
decoder_start_token_id: 53016,
decoder_vocab_size: Some(53017),
encoder_attention_heads: 16,
encoder_ffn_dim: 4096,
encoder_layers: 6,
eos_token_id: 43311,
forced_eos_token_id: 43311,
is_encoder_decoder: true,
max_position_embeddings: 1024,
pad_token_id: 53016,
scale_embedding: true,
share_encoder_decoder_embeddings: true,
use_cache: true,
vocab_size: 53017,
}
}
}
#[derive(Debug, Clone)]
struct SinusoidalPositionalEmbedding {
emb: Embedding,
}
impl SinusoidalPositionalEmbedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dev = vb.device();
let dtype = vb.dtype();
let num_positions = cfg.max_position_embeddings;
let dim = cfg.d_model;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, num_positions as u32, dev)?
.to_dtype(dtype)?
.reshape((num_positions, 1))?;
let freqs = t.matmul(&inv_freq)?;
let sin = freqs.sin()?;
let cos = freqs.cos()?;
let weights = Tensor::cat(&[&sin, &cos], 1)?.contiguous()?;
let emb = Embedding::from_weights(weights)?;
Ok(Self { emb })
}
fn forward(&self, input_ids: &Tensor, past_kv_len: usize) -> Result<Tensor> {
let seq_len = input_ids.dim(1)?;
Tensor::arange(
past_kv_len as u32,
(past_kv_len + seq_len) as u32,
input_ids.device(),
)?
.apply(&self.emb)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
out_proj: Linear,
scaling: f64,
num_heads: usize,
head_dim: usize,
}
impl Attention {
fn new(cfg: &Config, is_decoder: bool, vb: VarBuilder) -> Result<Self> {
let num_heads = if is_decoder {
cfg.decoder_attention_heads
} else {
cfg.encoder_attention_heads
};
let embed_dim = cfg.d_model;
let head_dim = embed_dim / num_heads;
let scaling = (head_dim as f64).powf(-0.5);
let q_proj = linear(embed_dim, embed_dim, vb.pp("q_proj"))?;
let k_proj = linear(embed_dim, embed_dim, vb.pp("k_proj"))?;
let v_proj = linear(embed_dim, embed_dim, vb.pp("v_proj"))?;
let out_proj = linear(embed_dim, embed_dim, vb.pp("out_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
out_proj,
scaling,
num_heads,
head_dim,
})
}
fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
tensor
.reshape((bsz, (), self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(&self, xs: &Tensor, kv_states: Option<&Tensor>) -> Result<Tensor> {
let is_cross_attn = kv_states.is_some();
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
let (key_states, value_states) = match kv_states {
None => {
let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
(key_states, value_states)
}
Some(kv_states) => {
let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
(key_states, value_states)
}
};
let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
let key_states = key_states.reshape(proj_shape)?;
let value_states = value_states.reshape(proj_shape)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
// todo: attn_mask
let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_probs.matmul(&value_states)?;
attn_output
.reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
.transpose(1, 2)?
.reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
.apply(&self.out_proj)
}
}
#[derive(Debug, Clone)]
struct EncoderLayer {
self_attn: Attention,
self_attn_layer_norm: LayerNorm,
activation_fn: candle_nn::Activation,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl EncoderLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
let fc1 = linear(cfg.d_model, cfg.encoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear(cfg.encoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
self_attn,
self_attn_layer_norm,
activation_fn: cfg.activation_function,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs =
(self.self_attn.forward(xs, None)? + residual)?.apply(&self.self_attn_layer_norm)?;
let residual = &xs;
let xs = xs
.apply(&self.fc1)?
.apply(&self.activation_fn)?
.apply(&self.fc2)?;
(xs + residual)?.apply(&self.final_layer_norm)
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
self_attn_layer_norm: LayerNorm,
activation_fn: candle_nn::Activation,
encoder_attn: Attention,
encoder_attn_layer_norm: LayerNorm,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl DecoderLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
let encoder_attn = Attention::new(cfg, true, vb.pp("encoder_attn"))?;
let encoder_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
let fc1 = linear(cfg.d_model, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear(cfg.decoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
self_attn,
self_attn_layer_norm,
activation_fn: cfg.activation_function,
encoder_attn,
encoder_attn_layer_norm,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(&self, xs: &Tensor, encoder_xs: Option<&Tensor>) -> Result<Tensor> {
let residual = xs;
let xs =
(self.self_attn.forward(xs, None)? + residual)?.apply(&self.self_attn_layer_norm)?;
let xs = match encoder_xs {
None => xs,
Some(encoder_xs) => {
let residual = &xs;
let xs = self.encoder_attn.forward(&xs, Some(encoder_xs))?;
(residual + xs)?.apply(&self.self_attn_layer_norm)?
}
};
let residual = &xs;
let xs = xs
.apply(&self.fc1)?
.apply(&self.activation_fn)?
.apply(&self.fc2)?;
(xs + residual)?.apply(&self.final_layer_norm)
}
}
#[derive(Debug, Clone)]
pub struct Encoder {
embed_tokens: Embedding,
embed_positions: SinusoidalPositionalEmbedding,
layers: Vec<EncoderLayer>,
embed_scale: Option<f64>,
}
impl Encoder {
fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
let mut layers = Vec::with_capacity(cfg.encoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.encoder_layers {
let layer = EncoderLayer::new(cfg, vb_l.pp(idx))?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
embed_tokens: embed_tokens.clone(),
embed_positions,
layers,
embed_scale,
})
}
pub fn forward(&self, xs: &Tensor, past_kv_len: usize) -> Result<Tensor> {
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let embed_pos = self
.embed_positions
.forward(&xs, past_kv_len)?
.unsqueeze(0)?;
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter() {
xs = layer.forward(&xs)?
}
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct Decoder {
embed_tokens: Embedding,
embed_positions: SinusoidalPositionalEmbedding,
layers: Vec<DecoderLayer>,
embed_scale: Option<f64>,
}
impl Decoder {
fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
let mut layers = Vec::with_capacity(cfg.decoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.decoder_layers {
let layer = DecoderLayer::new(cfg, vb_l.pp(idx))?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
embed_tokens: embed_tokens.clone(),
embed_positions,
layers,
embed_scale,
})
}
pub fn forward(
&self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
) -> Result<Tensor> {
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let embed_pos = self
.embed_positions
.forward(&xs, past_kv_len)?
.unsqueeze(0)?;
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter() {
xs = layer.forward(&xs, encoder_xs)?
}
Ok(xs)
}
}
#[derive(Debug, Clone)]
struct Model {
shared: Embedding,
encoder: Encoder,
decoder: Decoder,
}
impl Model {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let shared = Embedding::new(cfg.vocab_size, cfg.d_model, vb.pp("shared"))?;
let encoder = Encoder::new(cfg, &shared, vb.pp("encoder"))?;
let decoder = Decoder::new(cfg, &shared, vb.pp("decoder"))?;
Ok(Self {
shared,
encoder,
decoder,
})
}
}
#[derive(Debug, Clone)]
pub struct MTModel {
model: Model,
final_logits_bias: Tensor,
}
impl MTModel {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let target_vocab_size = cfg.decoder_vocab_size.unwrap_or(cfg.vocab_size);
let final_logits_bias = vb.get((1, target_vocab_size), "final_logits_bias")?;
let model = Model::new(cfg, vb.pp("model"))?;
Ok(Self {
model,
final_logits_bias,
})
}
pub fn encoder(&self) -> &Encoder {
&self.model.encoder
}
pub fn decoder(&self) -> &Decoder {
&self.model.decoder
}
pub fn decode(&self, xs: &Tensor, encoder_xs: &Tensor) -> Result<Tensor> {
self.model.decoder.forward(xs, Some(encoder_xs), 0)
}
}

View File

@ -10,6 +10,7 @@ pub mod jina_bert;
pub mod llama;
pub mod llama2_c;
pub mod llama2_c_weights;
pub mod marian;
pub mod mistral;
pub mod mixformer;
pub mod mpt;

View File

@ -14,6 +14,13 @@ impl Embedding {
Ok(Self { inner, span })
}
pub fn from_weights(weights: Tensor) -> Result<Self> {
let (_in_size, out_size) = weights.dims2()?;
let inner = candle_nn::Embedding::new(weights, out_size);
let span = tracing::span!(tracing::Level::TRACE, "embedding");
Ok(Self { inner, span })
}
pub fn embeddings(&self) -> &Tensor {
self.inner.embeddings()
}