mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00
Mnist training dropout (#677)
* Use dropout in the mnist training. * Fix.
This commit is contained in:
@ -65,33 +65,37 @@ struct ConvNet {
|
|||||||
conv2: Conv2d,
|
conv2: Conv2d,
|
||||||
fc1: Linear,
|
fc1: Linear,
|
||||||
fc2: Linear,
|
fc2: Linear,
|
||||||
|
dropout: candle_nn::Dropout,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Model for ConvNet {
|
impl ConvNet {
|
||||||
fn new(vs: VarBuilder) -> Result<Self> {
|
fn new(vs: VarBuilder) -> Result<Self> {
|
||||||
let conv1 = candle_nn::conv2d(1, 32, 5, Default::default(), vs.pp("c1"))?;
|
let conv1 = candle_nn::conv2d(1, 32, 5, Default::default(), vs.pp("c1"))?;
|
||||||
let conv2 = candle_nn::conv2d(32, 64, 5, Default::default(), vs.pp("c2"))?;
|
let conv2 = candle_nn::conv2d(32, 64, 5, Default::default(), vs.pp("c2"))?;
|
||||||
let fc1 = candle_nn::linear(1024, 1024, vs.pp("fc1"))?;
|
let fc1 = candle_nn::linear(1024, 1024, vs.pp("fc1"))?;
|
||||||
let fc2 = candle_nn::linear(1024, LABELS, vs.pp("fc2"))?;
|
let fc2 = candle_nn::linear(1024, LABELS, vs.pp("fc2"))?;
|
||||||
|
let dropout = candle_nn::Dropout::new(0.5);
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
conv1,
|
conv1,
|
||||||
conv2,
|
conv2,
|
||||||
fc1,
|
fc1,
|
||||||
fc2,
|
fc2,
|
||||||
|
dropout,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
|
||||||
let (b_sz, _img_dim) = xs.dims2()?;
|
let (b_sz, _img_dim) = xs.dims2()?;
|
||||||
xs.reshape((b_sz, 1, 28, 28))?
|
let xs = xs
|
||||||
|
.reshape((b_sz, 1, 28, 28))?
|
||||||
.apply(&self.conv1)?
|
.apply(&self.conv1)?
|
||||||
.max_pool2d(2)?
|
.max_pool2d(2)?
|
||||||
.apply(&self.conv2)?
|
.apply(&self.conv2)?
|
||||||
.max_pool2d(2)?
|
.max_pool2d(2)?
|
||||||
.flatten_from(1)?
|
.flatten_from(1)?
|
||||||
.apply(&self.fc1)?
|
.apply(&self.fc1)?
|
||||||
.relu()?
|
.relu()?;
|
||||||
.apply(&self.fc2)
|
self.dropout.forward(&xs, train)?.apply(&self.fc2)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -138,7 +142,7 @@ fn training_loop_cnn(
|
|||||||
for batch_idx in batch_idxs.iter() {
|
for batch_idx in batch_idxs.iter() {
|
||||||
let train_images = train_images.narrow(0, batch_idx * BSIZE, BSIZE)?;
|
let train_images = train_images.narrow(0, batch_idx * BSIZE, BSIZE)?;
|
||||||
let train_labels = train_labels.narrow(0, batch_idx * BSIZE, BSIZE)?;
|
let train_labels = train_labels.narrow(0, batch_idx * BSIZE, BSIZE)?;
|
||||||
let logits = model.forward(&train_images)?;
|
let logits = model.forward(&train_images, true)?;
|
||||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
||||||
let loss = loss::nll(&log_sm, &train_labels)?;
|
let loss = loss::nll(&log_sm, &train_labels)?;
|
||||||
opt.backward_step(&loss)?;
|
opt.backward_step(&loss)?;
|
||||||
@ -146,7 +150,7 @@ fn training_loop_cnn(
|
|||||||
}
|
}
|
||||||
let avg_loss = sum_loss / n_batches as f32;
|
let avg_loss = sum_loss / n_batches as f32;
|
||||||
|
|
||||||
let test_logits = model.forward(&test_images)?;
|
let test_logits = model.forward(&test_images, false)?;
|
||||||
let sum_ok = test_logits
|
let sum_ok = test_logits
|
||||||
.argmax(D::Minus1)?
|
.argmax(D::Minus1)?
|
||||||
.eq(&test_labels)?
|
.eq(&test_labels)?
|
||||||
|
Reference in New Issue
Block a user