Experiment with resnet (#1128)

* Add some preliminary support for resnet.

* Add an actual resnet example.
This commit is contained in:
Laurent Mazare
2023-10-19 09:25:03 +01:00
committed by GitHub
parent 87eb1658e1
commit 8e773cc0c6
4 changed files with 217 additions and 0 deletions

View File

@ -0,0 +1,76 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::resnet;
use clap::{Parser, ValueEnum};
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
Resnet18,
Resnet34,
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Variant of the model to use.
#[arg(value_enum, long, default_value_t = Which::Resnet18)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-resnet".into());
let filename = match args.which {
Which::Resnet18 => "resnet18.safetensors",
Which::Resnet34 => "resnet34.safetensors",
};
api.get(filename)?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let class_count = candle_examples::imagenet::CLASS_COUNT as usize;
let model = match args.which {
Which::Resnet18 => resnet::resnet18(class_count, vb)?,
Which::Resnet34 => resnet::resnet34(class_count, vb)?,
};
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

View File

@ -25,3 +25,12 @@ impl<'a> super::Module for Func<'a> {
(*self.f)(xs)
}
}
impl<'a> Func<'a> {
pub fn new<F>(f: F) -> Self
where
F: 'a + Fn(&Tensor) -> Result<Tensor> + Send,
{
Self { f: Box::new(f) }
}
}

View File

@ -14,6 +14,7 @@ pub mod quantized_mixformer;
pub mod quantized_mpt;
pub mod quantized_stable_lm;
pub mod quantized_t5;
pub mod resnet;
pub mod segment_anything;
pub mod stable_diffusion;
pub mod stable_lm;

View File

@ -0,0 +1,131 @@
//! ResNet implementation.
//!
//! See "Deep Residual Learning for Image Recognition" He et al. 2015
//! <https://arxiv.org/abs/1512.03385>
use candle::{Result, D};
use candle_nn::{batch_norm, Conv2d, Func, VarBuilder};
fn conv2d(
c_in: usize,
c_out: usize,
ksize: usize,
padding: usize,
stride: usize,
vb: VarBuilder,
) -> Result<Conv2d> {
let conv2d_cfg = candle_nn::Conv2dConfig {
stride,
padding,
..Default::default()
};
candle_nn::conv2d_no_bias(c_in, c_out, ksize, conv2d_cfg, vb)
}
fn downsample(c_in: usize, c_out: usize, stride: usize, vb: VarBuilder) -> Result<Func> {
if stride != 1 || c_in != c_out {
let conv = conv2d(c_in, c_out, 1, 0, stride, vb.pp(0))?;
let bn = batch_norm(c_out, 1e-5, vb.pp(1))?;
Ok(Func::new(move |xs| xs.apply(&conv)?.apply(&bn)))
} else {
Ok(Func::new(|xs| Ok(xs.clone())))
}
}
fn basic_block(c_in: usize, c_out: usize, stride: usize, vb: VarBuilder) -> Result<Func> {
let conv1 = conv2d(c_in, c_out, 3, 1, stride, vb.pp("conv1"))?;
let bn1 = batch_norm(c_out, 1e-5, vb.pp("bn1"))?;
let conv2 = conv2d(c_out, c_out, 3, 1, 1, vb.pp("conv2"))?;
let bn2 = batch_norm(c_out, 1e-5, vb.pp("bn2"))?;
let downsample = downsample(c_in, c_out, stride, vb.pp("downsample"))?;
Ok(Func::new(move |xs| {
let ys = xs
.apply(&conv1)?
.apply(&bn1)?
.relu()?
.apply(&conv2)?
.apply(&bn2)?;
(xs.apply(&downsample)? + ys)?.relu()
}))
}
fn basic_layer(
c_in: usize,
c_out: usize,
stride: usize,
cnt: usize,
vb: VarBuilder,
) -> Result<Func> {
let mut layers = Vec::with_capacity(cnt);
for index in 0..cnt {
let l_in = if index == 0 { c_in } else { c_out };
let stride = if index == 0 { stride } else { 1 };
layers.push(basic_block(l_in, c_out, stride, vb.pp(index))?)
}
Ok(Func::new(move |xs| {
let mut xs = xs.clone();
for layer in layers.iter() {
xs = xs.apply(layer)?
}
Ok(xs)
}))
}
fn resnet(
nclasses: Option<usize>,
c1: usize,
c2: usize,
c3: usize,
c4: usize,
vb: VarBuilder,
) -> Result<Func> {
let conv1 = conv2d(3, 64, 7, 3, 2, vb.pp("conv1"))?;
let bn1 = batch_norm(64, 1e-5, vb.pp("bn1"))?;
let layer1 = basic_layer(64, 64, 1, c1, vb.pp("layer1"))?;
let layer2 = basic_layer(64, 128, 2, c2, vb.pp("layer2"))?;
let layer3 = basic_layer(128, 256, 2, c3, vb.pp("layer3"))?;
let layer4 = basic_layer(256, 512, 2, c4, vb.pp("layer4"))?;
let fc = match nclasses {
None => None,
Some(nclasses) => {
let linear = candle_nn::linear(512, nclasses, vb.pp("fc"))?;
Some(linear)
}
};
Ok(Func::new(move |xs| {
let xs = xs
.apply(&conv1)?
.apply(&bn1)?
.relu()?
.pad_with_same(D::Minus1, 1, 1)?
.pad_with_same(D::Minus2, 1, 1)?
.max_pool2d_with_stride(3, 2)?
.apply(&layer1)?
.apply(&layer2)?
.apply(&layer3)?
.apply(&layer4)?
.mean(D::Minus1)?
.mean(D::Minus1)?;
match &fc {
None => Ok(xs),
Some(fc) => xs.apply(fc),
}
}))
}
/// Creates a ResNet-18 model.
pub fn resnet18(num_classes: usize, vb: VarBuilder) -> Result<Func> {
resnet(Some(num_classes), 2, 2, 2, 2, vb)
}
pub fn resnet18_no_final_layer(vb: VarBuilder) -> Result<Func> {
resnet(None, 2, 2, 2, 2, vb)
}
/// Creates a ResNet-34 model.
pub fn resnet34(num_classes: usize, vb: VarBuilder) -> Result<Func> {
resnet(Some(num_classes), 3, 4, 6, 3, vb)
}
pub fn resnet34_no_final_layer(vb: VarBuilder) -> Result<Func> {
resnet(None, 3, 4, 6, 3, vb)
}