mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Experiment with resnet (#1128)
* Add some preliminary support for resnet. * Add an actual resnet example.
This commit is contained in:
@ -14,6 +14,7 @@ pub mod quantized_mixformer;
|
||||
pub mod quantized_mpt;
|
||||
pub mod quantized_stable_lm;
|
||||
pub mod quantized_t5;
|
||||
pub mod resnet;
|
||||
pub mod segment_anything;
|
||||
pub mod stable_diffusion;
|
||||
pub mod stable_lm;
|
||||
|
131
candle-transformers/src/models/resnet.rs
Normal file
131
candle-transformers/src/models/resnet.rs
Normal file
@ -0,0 +1,131 @@
|
||||
//! ResNet implementation.
|
||||
//!
|
||||
//! See "Deep Residual Learning for Image Recognition" He et al. 2015
|
||||
//! <https://arxiv.org/abs/1512.03385>
|
||||
use candle::{Result, D};
|
||||
use candle_nn::{batch_norm, Conv2d, Func, VarBuilder};
|
||||
|
||||
fn conv2d(
|
||||
c_in: usize,
|
||||
c_out: usize,
|
||||
ksize: usize,
|
||||
padding: usize,
|
||||
stride: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Conv2d> {
|
||||
let conv2d_cfg = candle_nn::Conv2dConfig {
|
||||
stride,
|
||||
padding,
|
||||
..Default::default()
|
||||
};
|
||||
candle_nn::conv2d_no_bias(c_in, c_out, ksize, conv2d_cfg, vb)
|
||||
}
|
||||
|
||||
fn downsample(c_in: usize, c_out: usize, stride: usize, vb: VarBuilder) -> Result<Func> {
|
||||
if stride != 1 || c_in != c_out {
|
||||
let conv = conv2d(c_in, c_out, 1, 0, stride, vb.pp(0))?;
|
||||
let bn = batch_norm(c_out, 1e-5, vb.pp(1))?;
|
||||
Ok(Func::new(move |xs| xs.apply(&conv)?.apply(&bn)))
|
||||
} else {
|
||||
Ok(Func::new(|xs| Ok(xs.clone())))
|
||||
}
|
||||
}
|
||||
|
||||
fn basic_block(c_in: usize, c_out: usize, stride: usize, vb: VarBuilder) -> Result<Func> {
|
||||
let conv1 = conv2d(c_in, c_out, 3, 1, stride, vb.pp("conv1"))?;
|
||||
let bn1 = batch_norm(c_out, 1e-5, vb.pp("bn1"))?;
|
||||
let conv2 = conv2d(c_out, c_out, 3, 1, 1, vb.pp("conv2"))?;
|
||||
let bn2 = batch_norm(c_out, 1e-5, vb.pp("bn2"))?;
|
||||
let downsample = downsample(c_in, c_out, stride, vb.pp("downsample"))?;
|
||||
Ok(Func::new(move |xs| {
|
||||
let ys = xs
|
||||
.apply(&conv1)?
|
||||
.apply(&bn1)?
|
||||
.relu()?
|
||||
.apply(&conv2)?
|
||||
.apply(&bn2)?;
|
||||
(xs.apply(&downsample)? + ys)?.relu()
|
||||
}))
|
||||
}
|
||||
|
||||
fn basic_layer(
|
||||
c_in: usize,
|
||||
c_out: usize,
|
||||
stride: usize,
|
||||
cnt: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Func> {
|
||||
let mut layers = Vec::with_capacity(cnt);
|
||||
for index in 0..cnt {
|
||||
let l_in = if index == 0 { c_in } else { c_out };
|
||||
let stride = if index == 0 { stride } else { 1 };
|
||||
layers.push(basic_block(l_in, c_out, stride, vb.pp(index))?)
|
||||
}
|
||||
Ok(Func::new(move |xs| {
|
||||
let mut xs = xs.clone();
|
||||
for layer in layers.iter() {
|
||||
xs = xs.apply(layer)?
|
||||
}
|
||||
Ok(xs)
|
||||
}))
|
||||
}
|
||||
|
||||
fn resnet(
|
||||
nclasses: Option<usize>,
|
||||
c1: usize,
|
||||
c2: usize,
|
||||
c3: usize,
|
||||
c4: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Func> {
|
||||
let conv1 = conv2d(3, 64, 7, 3, 2, vb.pp("conv1"))?;
|
||||
let bn1 = batch_norm(64, 1e-5, vb.pp("bn1"))?;
|
||||
let layer1 = basic_layer(64, 64, 1, c1, vb.pp("layer1"))?;
|
||||
let layer2 = basic_layer(64, 128, 2, c2, vb.pp("layer2"))?;
|
||||
let layer3 = basic_layer(128, 256, 2, c3, vb.pp("layer3"))?;
|
||||
let layer4 = basic_layer(256, 512, 2, c4, vb.pp("layer4"))?;
|
||||
let fc = match nclasses {
|
||||
None => None,
|
||||
Some(nclasses) => {
|
||||
let linear = candle_nn::linear(512, nclasses, vb.pp("fc"))?;
|
||||
Some(linear)
|
||||
}
|
||||
};
|
||||
Ok(Func::new(move |xs| {
|
||||
let xs = xs
|
||||
.apply(&conv1)?
|
||||
.apply(&bn1)?
|
||||
.relu()?
|
||||
.pad_with_same(D::Minus1, 1, 1)?
|
||||
.pad_with_same(D::Minus2, 1, 1)?
|
||||
.max_pool2d_with_stride(3, 2)?
|
||||
.apply(&layer1)?
|
||||
.apply(&layer2)?
|
||||
.apply(&layer3)?
|
||||
.apply(&layer4)?
|
||||
.mean(D::Minus1)?
|
||||
.mean(D::Minus1)?;
|
||||
match &fc {
|
||||
None => Ok(xs),
|
||||
Some(fc) => xs.apply(fc),
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
/// Creates a ResNet-18 model.
|
||||
pub fn resnet18(num_classes: usize, vb: VarBuilder) -> Result<Func> {
|
||||
resnet(Some(num_classes), 2, 2, 2, 2, vb)
|
||||
}
|
||||
|
||||
pub fn resnet18_no_final_layer(vb: VarBuilder) -> Result<Func> {
|
||||
resnet(None, 2, 2, 2, 2, vb)
|
||||
}
|
||||
|
||||
/// Creates a ResNet-34 model.
|
||||
pub fn resnet34(num_classes: usize, vb: VarBuilder) -> Result<Func> {
|
||||
resnet(Some(num_classes), 3, 4, 6, 3, vb)
|
||||
}
|
||||
|
||||
pub fn resnet34_no_final_layer(vb: VarBuilder) -> Result<Func> {
|
||||
resnet(None, 3, 4, 6, 3, vb)
|
||||
}
|
Reference in New Issue
Block a user