Fixes for clippy 1.87. (#2956)

This commit is contained in:
Laurent Mazare
2025-05-15 21:50:27 +02:00
committed by GitHub
parent 9ce4fe6194
commit 92106c8762
6 changed files with 35 additions and 41 deletions

View File

@ -16,10 +16,9 @@ fn read_u32<T: Read>(reader: &mut T) -> std::io::Result<u32> {
fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> {
let magic_number = read_u32(reader)?;
if magic_number != expected {
Err(io::Error::new(
io::ErrorKind::Other,
format!("incorrect magic number {magic_number} != {expected}"),
))?;
Err(io::Error::other(format!(
"incorrect magic number {magic_number} != {expected}"
)))?;
}
Ok(())
}

View File

@ -20,8 +20,8 @@ use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::{Encoding, PaddingParams, Tokenizer};
enum TaskType {
Ner(DebertaV2NERModel),
TextClassification(DebertaV2SeqClassificationModel),
Ner(Box<DebertaV2NERModel>),
TextClassification(Box<DebertaV2SeqClassificationModel>),
}
#[derive(Parser, Debug, Clone, ValueEnum)]
@ -169,21 +169,16 @@ impl Args {
match self.task {
ArgsTask::Ner => Ok((
TaskType::Ner(DebertaV2NERModel::load(
vb,
&config,
Some(id2label.clone()),
)?),
TaskType::Ner(DebertaV2NERModel::load(vb, &config, Some(id2label.clone()))?.into()),
config,
tokenizer,
id2label,
)),
ArgsTask::TextClassification => Ok((
TaskType::TextClassification(DebertaV2SeqClassificationModel::load(
vb,
&config,
Some(id2label.clone()),
)?),
TaskType::TextClassification(
DebertaV2SeqClassificationModel::load(vb, &config, Some(id2label.clone()))?
.into(),
),
config,
tokenizer,
id2label,

View File

@ -16,8 +16,8 @@ use std::path::PathBuf;
use tokenizers::Tokenizer;
enum ModelType {
Masked(DistilBertForMaskedLM),
UnMasked(DistilBertModel),
Masked(Box<DistilBertForMaskedLM>),
UnMasked(Box<DistilBertModel>),
}
impl ModelType {
@ -144,10 +144,12 @@ impl Args {
fn create_model(&self, config: &Config, vb: VarBuilder) -> Result<ModelType> {
match self.model {
Which::DistilbertForMaskedLM => {
Ok(ModelType::Masked(DistilBertForMaskedLM::load(vb, config)?))
}
Which::DistilBert => Ok(ModelType::UnMasked(DistilBertModel::load(vb, config)?)),
Which::DistilbertForMaskedLM => Ok(ModelType::Masked(
DistilBertForMaskedLM::load(vb, config)?.into(),
)),
Which::DistilBert => Ok(ModelType::UnMasked(
DistilBertModel::load(vb, config)?.into(),
)),
}
}
}

View File

@ -869,8 +869,8 @@ impl Moe {
}
enum MoeOrMlp {
Moe(Moe),
Mlp(Mlp),
Moe(Box<Moe>),
Mlp(Box<Mlp>),
}
impl MoeOrMlp {
@ -908,14 +908,17 @@ impl DecoderLayer {
&& layer_idx >= cfg.first_k_dense_replace
&& layer_idx % cfg.moe_layer_freq == 0
{
MoeOrMlp::Moe(Moe::new(
cfg,
vb.pp("mlp"),
cfg.n_shared_experts,
cfg.n_routed_experts.unwrap(),
)?)
MoeOrMlp::Moe(
Moe::new(
cfg,
vb.pp("mlp"),
cfg.n_shared_experts,
cfg.n_routed_experts.unwrap(),
)?
.into(),
)
} else {
MoeOrMlp::Mlp(Mlp::new(cfg, vb.pp("mlp"), None, None)?)
MoeOrMlp::Mlp(Mlp::new(cfg, vb.pp("mlp"), None, None)?.into())
};
Ok(Self {

View File

@ -17,8 +17,8 @@ const CROP_NMS_THRESH: f32 = 0.7;
#[derive(Debug)]
enum ImageEncoder {
Original(ImageEncoderViT),
TinyViT(TinyViT),
Original(Box<ImageEncoderViT>),
TinyViT(Box<TinyViT>),
}
impl Module for ImageEncoder {
@ -83,7 +83,7 @@ impl Sam {
let pixel_std =
Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
Ok(Self {
image_encoder: ImageEncoder::Original(image_encoder),
image_encoder: ImageEncoder::Original(image_encoder.into()),
prompt_encoder,
mask_decoder,
pixel_std,
@ -114,7 +114,7 @@ impl Sam {
let pixel_std =
Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
Ok(Self {
image_encoder: ImageEncoder::TinyViT(image_encoder),
image_encoder: ImageEncoder::TinyViT(image_encoder.into()),
prompt_encoder,
mask_decoder,
pixel_std,

View File

@ -134,12 +134,7 @@ impl Scheduler for DDIMScheduler {
timestep
};
// https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195
let prev_timestep = if timestep > self.step_ratio {
timestep - self.step_ratio
} else {
0
};
let prev_timestep = timestep.saturating_sub(self.step_ratio);
let alpha_prod_t = self.alphas_cumprod[timestep];
let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep];
let beta_prod_t = 1. - alpha_prod_t;