Specialized attention module for Wuerstchen. (#890)

* Specialized attention module for Wuerstchen.

* Reshaping ops.

* Attention processor.

* Finish the forward pass.

* Hook the new attention processor.

* Get the prior forward pass to work.

* Make it contiguous.
This commit is contained in:
Laurent Mazare
2023-09-18 21:16:09 +01:00
committed by GitHub
parent 1542e92629
commit 92db8cecd3
4 changed files with 80 additions and 5 deletions

View File

@ -0,0 +1,74 @@
use candle::{Module, Result, Tensor};
use candle_nn::{linear, Linear, VarBuilder};
// A simplified version of:
// https://github.com/huggingface/diffusers/blob/119ad2c3dc8a8fb8446a83f4bf6f20929487b47f/src/diffusers/models/attention_processor.py#L38
#[derive(Debug)]
pub struct Attention {
to_q: Linear,
to_k: Linear,
to_v: Linear,
to_out: Linear,
heads: usize,
scale: f64,
}
impl Attention {
pub fn new(query_dim: usize, heads: usize, dim_head: usize, vb: VarBuilder) -> Result<Self> {
let inner_dim = dim_head * heads;
let scale = 1.0 / f64::sqrt(dim_head as f64);
let to_q = linear(query_dim, inner_dim, vb.pp("to_q"))?;
let to_k = linear(query_dim, inner_dim, vb.pp("to_k"))?;
let to_v = linear(query_dim, inner_dim, vb.pp("to_v"))?;
let to_out = linear(inner_dim, query_dim, vb.pp("to_out.0"))?;
Ok(Self {
to_q,
to_k,
to_v,
to_out,
scale,
heads,
})
}
fn batch_to_head_dim(&self, xs: &Tensor) -> Result<Tensor> {
let (b_size, seq_len, dim) = xs.dims3()?;
xs.reshape((b_size / self.heads, self.heads, seq_len, dim))?
.permute((0, 2, 1, 3))?
.reshape((b_size / self.heads, seq_len, dim * self.heads))
}
fn head_to_batch_dim(&self, xs: &Tensor) -> Result<Tensor> {
let (b_size, seq_len, dim) = xs.dims3()?;
xs.reshape((b_size, seq_len, self.heads, dim / self.heads))?
.permute((0, 2, 1, 3))?
.reshape((b_size * self.heads, seq_len, dim / self.heads))
}
fn get_attention_scores(&self, query: &Tensor, key: &Tensor) -> Result<Tensor> {
let attn_probs = (query.matmul(&key.t()?)? * self.scale)?;
candle_nn::ops::softmax_last_dim(&attn_probs)
}
pub fn forward(&self, xs: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
let (b_size, channel, h, w) = xs.dims4()?;
let xs = xs.reshape((b_size, channel, h * w))?.t()?;
let query = self.to_q.forward(&xs)?;
let key = self.to_k.forward(encoder_hidden_states)?;
let value = self.to_v.forward(encoder_hidden_states)?;
let query = self.head_to_batch_dim(&query)?;
let key = self.head_to_batch_dim(&key)?;
let value = self.head_to_batch_dim(&value)?;
let attn_prs = self.get_attention_scores(&query, &key)?;
let xs = attn_prs.matmul(&value)?;
let xs = self.batch_to_head_dim(&xs)?;
self.to_out
.forward(&xs)?
.t()?
.reshape((b_size, channel, h, w))
}
}

View File

@ -131,7 +131,7 @@ impl ResBlock {
xs + x_res
}
}
use crate::models::stable_diffusion::attention::CrossAttention as Attention;
use super::attention_processor::Attention;
#[derive(Debug)]
pub struct AttnBlock {
self_attn: bool,
@ -149,7 +149,7 @@ impl AttnBlock {
vb: VarBuilder,
) -> Result<Self> {
let norm = WLayerNorm::new(c)?;
let attention = Attention::new(vb.pp("attention"), c, None, nhead, c / nhead, None, false)?;
let attention = Attention::new(c, nhead, c / nhead, vb.pp("attention"))?;
let kv_mapper_lin = candle_nn::linear(c_cond, c, vb.pp("kv_mapper.1"))?;
Ok(Self {
self_attn,
@ -165,10 +165,10 @@ impl AttnBlock {
let kv = if self.self_attn {
let (b_size, channel, _, _) = xs.dims4()?;
let norm_xs = norm_xs.reshape((b_size, channel, ()))?.transpose(1, 2)?;
Tensor::cat(&[&norm_xs, &kv], 1)?
Tensor::cat(&[&norm_xs, &kv], 1)?.contiguous()?
} else {
kv
};
xs + self.attention.forward(&norm_xs, Some(&kv))
xs + self.attention.forward(&norm_xs, &kv)
}
}

View File

@ -1,3 +1,4 @@
pub mod attention_processor;
pub mod common;
pub mod ddpm;
pub mod diffnext;

View File

@ -94,7 +94,7 @@ impl WPrior {
xs = block.ts_block.forward(&xs, &r_embed)?;
xs = block.attn_block.forward(&xs, &c_embed)?;
}
let ab = xs.apply(&self.out_ln)?.apply(&self.out_conv)?.chunk(1, 2)?;
let ab = xs.apply(&self.out_ln)?.apply(&self.out_conv)?.chunk(2, 1)?;
(x_in - &ab[0])? / ((&ab[1] - 1.)?.abs()? + 1e-5)
}
}