mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Merge branch 'main' into upgrade_bert
This commit is contained in:
@ -14,6 +14,7 @@ readme = "README.md"
|
||||
candle = { path = "../candle-core", default-features=false }
|
||||
serde = { version = "1.0.166", features = ["derive"] }
|
||||
serde_json = "1.0.99"
|
||||
num-traits = "0.2.15"
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = { version = "1", features = ["backtrace"] }
|
||||
@ -22,6 +23,7 @@ clap = { version = "4.2.4", features = ["derive"] }
|
||||
rand = "0.8.5"
|
||||
tokenizers = { version = "0.13.3", default-features=false, features=["onig"] }
|
||||
tokio = { version = "1.28.2", features = ["macros", "rt-multi-thread"] }
|
||||
wav = "1.0.0"
|
||||
|
||||
[features]
|
||||
default = ["cuda"]
|
||||
|
216
candle-examples/examples/whisper/audio.rs
Normal file
216
candle-examples/examples/whisper/audio.rs
Normal file
@ -0,0 +1,216 @@
|
||||
// Audio processing code, adapted from whisper.cpp
|
||||
// https://github.com/ggerganov/whisper.cpp
|
||||
|
||||
pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
|
||||
|
||||
impl Float for f32 {}
|
||||
impl Float for f64 {}
|
||||
|
||||
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
|
||||
fn fft<T: Float>(inp: &[T]) -> Vec<T> {
|
||||
let n = inp.len();
|
||||
let zero = T::zero();
|
||||
if n == 1 {
|
||||
return vec![inp[0], zero];
|
||||
}
|
||||
if n % 2 == 1 {
|
||||
return dft(inp);
|
||||
}
|
||||
let mut out = vec![zero; n * 2];
|
||||
|
||||
let mut even = vec![];
|
||||
even.reserve(n / 2);
|
||||
let mut odd = vec![];
|
||||
odd.reserve(n / 2);
|
||||
|
||||
for (i, &inp) in inp.iter().enumerate() {
|
||||
if i % 2 == 0 {
|
||||
even.push(inp)
|
||||
} else {
|
||||
odd.push(inp);
|
||||
}
|
||||
}
|
||||
|
||||
let even_fft = fft(&even);
|
||||
let odd_fft = fft(&odd);
|
||||
|
||||
let two_pi = T::PI() + T::PI();
|
||||
let n_t = T::from(n).unwrap();
|
||||
for k in 0..n / 2 {
|
||||
let k_t = T::from(k).unwrap();
|
||||
let theta = two_pi * k_t / n_t;
|
||||
let re = theta.cos();
|
||||
let im = -theta.sin();
|
||||
|
||||
let re_odd = odd_fft[2 * k];
|
||||
let im_odd = odd_fft[2 * k + 1];
|
||||
|
||||
out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
|
||||
out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
|
||||
|
||||
out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
|
||||
out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
|
||||
}
|
||||
out
|
||||
}
|
||||
|
||||
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
|
||||
fn dft<T: Float>(inp: &[T]) -> Vec<T> {
|
||||
let zero = T::zero();
|
||||
let n = inp.len();
|
||||
let two_pi = T::PI() + T::PI();
|
||||
|
||||
let mut out = Vec::new();
|
||||
out.reserve(2 * n);
|
||||
let n_t = T::from(n).unwrap();
|
||||
for k in 0..n {
|
||||
let k_t = T::from(k).unwrap();
|
||||
let mut re = zero;
|
||||
let mut im = zero;
|
||||
|
||||
for (j, &inp) in inp.iter().enumerate() {
|
||||
let j_t = T::from(j).unwrap();
|
||||
let angle = two_pi * k_t * j_t / n_t;
|
||||
re += inp * angle.cos();
|
||||
im -= inp * angle.sin();
|
||||
}
|
||||
|
||||
out.push(re);
|
||||
out.push(im);
|
||||
}
|
||||
out
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
|
||||
fn log_mel_spectrogram_w<T: Float>(
|
||||
ith: usize,
|
||||
hann: &[T],
|
||||
samples: &[T],
|
||||
filters: &[T],
|
||||
fft_size: usize,
|
||||
fft_step: usize,
|
||||
speed_up: bool,
|
||||
n_len: usize,
|
||||
n_mel: usize,
|
||||
n_threads: usize,
|
||||
) -> Vec<T> {
|
||||
let n_fft = if speed_up {
|
||||
1 + fft_size / 4
|
||||
} else {
|
||||
1 + fft_size / 2
|
||||
};
|
||||
|
||||
let zero = T::zero();
|
||||
let half = T::from(0.5).unwrap();
|
||||
let mut fft_in = vec![zero; fft_size];
|
||||
let mut mel = vec![zero; n_len * n_mel];
|
||||
|
||||
for i in (ith..n_len).step_by(n_threads) {
|
||||
let offset = i * fft_step;
|
||||
|
||||
// apply Hanning window
|
||||
for j in 0..fft_size {
|
||||
fft_in[j] = if offset + j < samples.len() {
|
||||
hann[j] * samples[offset + j]
|
||||
} else {
|
||||
zero
|
||||
}
|
||||
}
|
||||
|
||||
// FFT -> mag^2
|
||||
let mut fft_out: Vec<T> = fft(&fft_in);
|
||||
|
||||
for j in 0..fft_size {
|
||||
fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
|
||||
}
|
||||
for j in 1..fft_size / 2 {
|
||||
let v = fft_out[fft_size - j];
|
||||
fft_out[j] += v;
|
||||
}
|
||||
|
||||
if speed_up {
|
||||
// scale down in the frequency domain results in a speed up in the time domain
|
||||
for j in 0..n_fft {
|
||||
fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// mel spectrogram
|
||||
for j in 0..n_mel {
|
||||
let mut sum = zero;
|
||||
for k in 0..n_fft {
|
||||
sum += fft_out[k] * filters[j * n_fft + k];
|
||||
}
|
||||
mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
|
||||
}
|
||||
}
|
||||
mel
|
||||
}
|
||||
|
||||
fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
|
||||
samples: &[T],
|
||||
filters: &[T],
|
||||
fft_size: usize,
|
||||
fft_step: usize,
|
||||
n_mel: usize,
|
||||
speed_up: bool,
|
||||
) -> Vec<T> {
|
||||
let zero = T::zero();
|
||||
let two_pi = T::PI() + T::PI();
|
||||
let half = T::from(0.5).unwrap();
|
||||
let one = T::from(1.0).unwrap();
|
||||
let four = T::from(4.0).unwrap();
|
||||
let fft_size_t = T::from(fft_size).unwrap();
|
||||
|
||||
let hann: Vec<T> = (0..fft_size)
|
||||
.map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
|
||||
.collect();
|
||||
let n_len = samples.len() / fft_step;
|
||||
|
||||
// pad audio with at least one extra chunk of zeros
|
||||
let pad = 100 * super::CHUNK_LENGTH / 2;
|
||||
let n_len = if n_len % pad != 0 {
|
||||
(n_len / pad + 1) * pad
|
||||
} else {
|
||||
n_len
|
||||
};
|
||||
let n_len = n_len + pad;
|
||||
let samples = {
|
||||
let mut samples_padded = samples.to_vec();
|
||||
let to_add = n_len * fft_step - samples.len();
|
||||
samples_padded.extend(std::iter::repeat(zero).take(to_add));
|
||||
samples_padded
|
||||
};
|
||||
|
||||
// Use a single thread for now.
|
||||
let mut mel = log_mel_spectrogram_w(
|
||||
0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
|
||||
);
|
||||
let mmax = mel
|
||||
.iter()
|
||||
.max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
|
||||
.copied()
|
||||
.unwrap_or(zero)
|
||||
- T::from(8).unwrap();
|
||||
for m in mel.iter_mut() {
|
||||
let v = T::max(*m, mmax);
|
||||
*m = v / four + one
|
||||
}
|
||||
mel
|
||||
}
|
||||
|
||||
pub fn pcm_to_mel<T: Float + std::fmt::Display>(
|
||||
samples: &[T],
|
||||
filters: &[T],
|
||||
) -> anyhow::Result<Vec<T>> {
|
||||
let mel = log_mel_spectrogram_(
|
||||
samples,
|
||||
filters,
|
||||
super::N_FFT,
|
||||
super::HOP_LENGTH,
|
||||
super::N_MELS,
|
||||
false,
|
||||
);
|
||||
Ok(mel)
|
||||
}
|
13
candle-examples/examples/whisper/extract_weights.py
Normal file
13
candle-examples/examples/whisper/extract_weights.py
Normal file
@ -0,0 +1,13 @@
|
||||
# Get the checkpoint from
|
||||
# https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt
|
||||
|
||||
import torch
|
||||
from safetensors.torch import save_file
|
||||
|
||||
data = torch.load("tiny.en.pt")
|
||||
weights = {}
|
||||
for k, v in data["model_state_dict"].items():
|
||||
weights[k] = v.contiguous()
|
||||
print(k, v.shape, v.dtype)
|
||||
save_file(weights, "tiny.en.safetensors")
|
||||
print(data["dims"])
|
256
candle-examples/examples/whisper/main.rs
Normal file
256
candle-examples/examples/whisper/main.rs
Normal file
@ -0,0 +1,256 @@
|
||||
#![allow(dead_code)]
|
||||
// https://github.com/openai/whisper/blob/main/whisper/model.py
|
||||
// TODO:
|
||||
// - kv-cache support?
|
||||
// - Language detection?
|
||||
// - Batch size greater than 1.
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use clap::Parser;
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod audio;
|
||||
mod model;
|
||||
use model::{Config, VarBuilder, Whisper};
|
||||
|
||||
const DTYPE: DType = DType::F32;
|
||||
|
||||
// Audio parameters.
|
||||
const SAMPLE_RATE: usize = 16000;
|
||||
const N_FFT: usize = 400;
|
||||
const N_MELS: usize = 80;
|
||||
const HOP_LENGTH: usize = 160;
|
||||
const CHUNK_LENGTH: usize = 30;
|
||||
const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
|
||||
const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
|
||||
const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
|
||||
const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
|
||||
const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
|
||||
|
||||
const NO_SPEECH_THRESHOLD: f64 = 0.6;
|
||||
const LOGPROB_THRESHOLD: f64 = -1.0;
|
||||
const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
|
||||
const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
|
||||
|
||||
// Tokenizer dependent bits.
|
||||
const SOT_TOKEN: u32 = 50257;
|
||||
const EOT_TOKEN: u32 = 50256;
|
||||
const NO_SPEECH_TOKEN: u32 = 50361;
|
||||
const NO_TIMESTAMP_TOKEN: u32 = 50362;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct DecodingResult {
|
||||
tokens: Vec<u32>,
|
||||
text: String,
|
||||
avg_logprob: f64,
|
||||
no_speech_prob: f64,
|
||||
temperature: f64,
|
||||
compression_ratio: f64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Segment {
|
||||
start: f64,
|
||||
duration: f64,
|
||||
dr: DecodingResult,
|
||||
}
|
||||
|
||||
struct Decode {
|
||||
model: Whisper,
|
||||
rng: rand::rngs::StdRng,
|
||||
tokenizer: Tokenizer,
|
||||
}
|
||||
|
||||
impl Decode {
|
||||
fn decode(&mut self, mel: &Tensor, t: f64) -> Result<DecodingResult> {
|
||||
let model = &self.model;
|
||||
let audio_features = model.encoder.forward(mel)?;
|
||||
println!("audio features: {:?}", audio_features.dims());
|
||||
let sample_len = model.config.n_text_ctx / 2;
|
||||
let mut sum_logprob = 0f64;
|
||||
let mut no_speech_prob = f64::NAN;
|
||||
let mut tokens = vec![SOT_TOKEN];
|
||||
for i in 0..sample_len {
|
||||
let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?;
|
||||
|
||||
// The model expects a batch dim but this inference loop does not handle
|
||||
// it so we add it at this point.
|
||||
let tokens_t = tokens_t.unsqueeze(0)?;
|
||||
let logits = model.decoder.forward(&tokens_t, &audio_features)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
|
||||
// Extract the no speech probability on the first iteration by looking at the first
|
||||
// token logits and the probability for the according token.
|
||||
if i == 0 {
|
||||
no_speech_prob = logits
|
||||
.get(0)?
|
||||
.softmax(0)?
|
||||
.get(NO_SPEECH_TOKEN as usize)?
|
||||
.to_scalar::<f32>()? as f64;
|
||||
}
|
||||
|
||||
let (seq_len, _) = logits.shape().r2()?;
|
||||
let logits = logits.get(seq_len - 1)?;
|
||||
let next_token = if t > 0f64 {
|
||||
let prs = (&logits / t)?.softmax(0)?;
|
||||
let logits_v: Vec<f32> = prs.to_vec1()?;
|
||||
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
|
||||
distr.sample(&mut self.rng) as u32
|
||||
} else {
|
||||
let logits_v: Vec<f32> = logits.to_vec1()?;
|
||||
logits_v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
||||
.map(|(i, _)| i as u32)
|
||||
.unwrap()
|
||||
};
|
||||
tokens.push(next_token);
|
||||
let prob = logits
|
||||
.softmax(logits.rank() - 1)?
|
||||
.get(next_token as usize)?
|
||||
.to_scalar::<f32>()? as f64;
|
||||
if next_token == EOT_TOKEN || tokens.len() > model.config.n_text_ctx {
|
||||
break;
|
||||
}
|
||||
sum_logprob += prob.ln();
|
||||
}
|
||||
let text = self
|
||||
.tokenizer
|
||||
.decode(tokens.clone(), true)
|
||||
.map_err(E::msg)?;
|
||||
let avg_logprob = sum_logprob / tokens.len() as f64;
|
||||
|
||||
Ok(DecodingResult {
|
||||
tokens,
|
||||
text,
|
||||
avg_logprob,
|
||||
no_speech_prob,
|
||||
temperature: t,
|
||||
compression_ratio: f64::NAN,
|
||||
})
|
||||
}
|
||||
|
||||
fn decode_with_fallback(&mut self, segment: &Tensor) -> Result<DecodingResult> {
|
||||
for (i, &t) in TEMPERATURES.iter().enumerate() {
|
||||
let dr: Result<DecodingResult> = self.decode(segment, t);
|
||||
if i == TEMPERATURES.len() - 1 {
|
||||
return dr;
|
||||
}
|
||||
// On errors, we try again with a different temperature.
|
||||
match dr {
|
||||
Ok(dr) => {
|
||||
let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
|
||||
|| dr.avg_logprob < LOGPROB_THRESHOLD;
|
||||
if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
|
||||
return Ok(dr);
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
println!("Error running at {t}: {err}")
|
||||
}
|
||||
}
|
||||
}
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(long)]
|
||||
weights: String,
|
||||
|
||||
/// The input to be processed, in wav formats.
|
||||
#[arg(long)]
|
||||
input: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_config: String,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The mel filters in safetensors format.
|
||||
#[arg(
|
||||
long,
|
||||
default_value = "candle-examples/examples/whisper/mel_filters.safetensors"
|
||||
)]
|
||||
filters: String,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = if args.cpu {
|
||||
Device::Cpu
|
||||
} else {
|
||||
Device::new_cuda(0)?
|
||||
};
|
||||
let rng = rand::rngs::StdRng::seed_from_u64(args.seed);
|
||||
|
||||
let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
|
||||
|
||||
let mel_filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? };
|
||||
let mel_filters = mel_filters.deserialize()?;
|
||||
let mel_filters = mel_filters.tensor("mel_80", &device)?;
|
||||
println!("loaded mel filters {:?}", mel_filters.shape());
|
||||
let mel_filters = mel_filters.flatten_all()?.to_vec1::<f32>()?;
|
||||
|
||||
let mut input = std::fs::File::open(args.input)?;
|
||||
let (header, data) = wav::read(&mut input)?;
|
||||
println!("loaded wav data: {header:?}");
|
||||
if header.sampling_rate != SAMPLE_RATE as u32 {
|
||||
anyhow::bail!("wav file must have a {} sampling rate", SAMPLE_RATE)
|
||||
}
|
||||
let data = data.as_sixteen().expect("expected 16 bit wav file");
|
||||
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
|
||||
.iter()
|
||||
.map(|v| *v as f32 / 32768.)
|
||||
.collect();
|
||||
println!("pcm data loaded {}", pcm_data.len());
|
||||
let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?;
|
||||
let mel_len = mel.len();
|
||||
let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?;
|
||||
println!("loaded mel: {:?}", mel.dims());
|
||||
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
|
||||
let model = Whisper::load(&vb, Config::tiny_en())?;
|
||||
let mut dc = Decode {
|
||||
model,
|
||||
rng,
|
||||
tokenizer,
|
||||
};
|
||||
|
||||
let (_, _, content_frames) = mel.shape().r3()?;
|
||||
let mut seek = 0;
|
||||
let mut segments = vec![];
|
||||
while seek < content_frames {
|
||||
let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
|
||||
let segment_size = usize::min(content_frames - seek, N_FRAMES);
|
||||
let mel_segment = mel.narrow(2, seek, segment_size)?;
|
||||
let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
|
||||
let dr = dc.decode_with_fallback(&mel_segment)?;
|
||||
seek += segment_size;
|
||||
if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
|
||||
println!("no speech detected, skipping {seek} {dr:?}");
|
||||
continue;
|
||||
}
|
||||
let segment = Segment {
|
||||
start: time_offset,
|
||||
duration: segment_duration,
|
||||
dr,
|
||||
};
|
||||
println!("{seek}: {segment:?}");
|
||||
segments.push(segment)
|
||||
}
|
||||
Ok(())
|
||||
}
|
BIN
candle-examples/examples/whisper/mel_filters.safetensors
Normal file
BIN
candle-examples/examples/whisper/mel_filters.safetensors
Normal file
Binary file not shown.
547
candle-examples/examples/whisper/model.rs
Normal file
547
candle-examples/examples/whisper/model.rs
Normal file
@ -0,0 +1,547 @@
|
||||
// We use anyhow rather than candle errors as it provides better support for getting the backtrace
|
||||
// back when using RUST_LIB_BACKTRACE=1.
|
||||
use anyhow::Result;
|
||||
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct VarBuilder<'a> {
|
||||
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> VarBuilder<'a> {
|
||||
pub fn from_safetensors(
|
||||
safetensors: Vec<SafeTensors<'a>>,
|
||||
dtype: DType,
|
||||
device: Device,
|
||||
) -> Self {
|
||||
let mut routing = HashMap::new();
|
||||
for (index, sf) in safetensors.iter().enumerate() {
|
||||
for k in sf.names() {
|
||||
routing.insert(k.to_string(), index);
|
||||
}
|
||||
}
|
||||
Self {
|
||||
safetensors: Some((routing, safetensors)),
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zeros(dtype: DType, device: Device) -> Self {
|
||||
Self {
|
||||
safetensors: None,
|
||||
device,
|
||||
dtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||
let s: Shape = s.into();
|
||||
match &self.safetensors {
|
||||
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||
Some((routing, safetensors)) => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||
let tensor = safetensors[*index]
|
||||
.tensor(tensor_name, &self.device)?
|
||||
.to_dtype(self.dtype)?;
|
||||
if *tensor.shape() != s {
|
||||
let msg = format!("shape mismatch for {tensor_name}");
|
||||
Err(candle::Error::UnexpectedShape {
|
||||
msg,
|
||||
expected: s,
|
||||
got: tensor.shape().clone(),
|
||||
})?
|
||||
}
|
||||
Ok(tensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
enum HiddenAct {
|
||||
Gelu,
|
||||
Relu,
|
||||
}
|
||||
|
||||
impl HiddenAct {
|
||||
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
||||
match self {
|
||||
Self::Gelu => xs.gelu(),
|
||||
Self::Relu => xs.relu(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct Config {
|
||||
pub n_mels: usize,
|
||||
pub n_audio_ctx: usize,
|
||||
pub n_audio_state: usize,
|
||||
pub n_audio_head: usize,
|
||||
pub n_audio_layer: usize,
|
||||
pub n_vocab: usize,
|
||||
pub n_text_ctx: usize,
|
||||
pub n_text_state: usize,
|
||||
pub n_text_head: usize,
|
||||
pub n_text_layer: usize,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn tiny_en() -> Self {
|
||||
Self {
|
||||
n_mels: 80,
|
||||
n_vocab: 51864,
|
||||
n_audio_ctx: 1500,
|
||||
n_audio_state: 384,
|
||||
n_audio_head: 6,
|
||||
n_audio_layer: 4,
|
||||
n_text_ctx: 448,
|
||||
n_text_state: 384,
|
||||
n_text_head: 6,
|
||||
n_text_layer: 4,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Embedding {
|
||||
embeddings: Tensor,
|
||||
hidden_size: usize,
|
||||
}
|
||||
|
||||
impl Embedding {
|
||||
fn new(embeddings: Tensor, hidden_size: usize) -> Self {
|
||||
Self {
|
||||
embeddings,
|
||||
hidden_size,
|
||||
}
|
||||
}
|
||||
|
||||
fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
|
||||
Ok(Self::new(embeddings, hidden_size))
|
||||
}
|
||||
|
||||
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
|
||||
let mut final_dims = indexes.dims().to_vec();
|
||||
final_dims.push(self.hidden_size);
|
||||
let indexes = indexes.flatten_all()?;
|
||||
let values = Tensor::embedding(&indexes, &self.embeddings)?;
|
||||
let values = values.reshape(final_dims)?;
|
||||
Ok(values)
|
||||
}
|
||||
}
|
||||
|
||||
struct Linear {
|
||||
weight: Tensor,
|
||||
bias: Option<Tensor>,
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
||||
let bias = vb.get(size2, &format!("{p}.bias"))?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: Some(bias),
|
||||
})
|
||||
}
|
||||
|
||||
fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
||||
Ok(Self { weight, bias: None })
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
||||
let (bsize, _, _) = x.shape().r3()?;
|
||||
let w = self.weight.broadcast_left(bsize)?.t()?;
|
||||
let x = x.matmul(&w)?;
|
||||
match &self.bias {
|
||||
None => Ok(x),
|
||||
Some(bias) => x.broadcast_add(bias),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
struct ConvConfig {
|
||||
padding: usize,
|
||||
stride: usize,
|
||||
}
|
||||
|
||||
impl Default for ConvConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
padding: 0,
|
||||
stride: 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Conv1D {
|
||||
weight: Tensor,
|
||||
bias: Option<Tensor>,
|
||||
config: ConvConfig,
|
||||
}
|
||||
|
||||
impl Conv1D {
|
||||
fn load(
|
||||
in_channels: usize,
|
||||
out_channels: usize,
|
||||
kernel_size: usize,
|
||||
config: ConvConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let weight = vb.get(
|
||||
(out_channels, in_channels, kernel_size),
|
||||
&format!("{p}.weight"),
|
||||
)?;
|
||||
let bias = vb.get(out_channels, &format!("{p}.bias"))?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: Some(bias),
|
||||
config,
|
||||
})
|
||||
}
|
||||
|
||||
fn load_no_bias(
|
||||
in_channels: usize,
|
||||
out_channels: usize,
|
||||
kernel_size: usize,
|
||||
config: ConvConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let weight = vb.get(
|
||||
(out_channels, in_channels, kernel_size),
|
||||
&format!("{p}.weight"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: None,
|
||||
config,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?;
|
||||
match &self.bias {
|
||||
None => Ok(x),
|
||||
Some(bias) => {
|
||||
let b = bias.shape().r1()?;
|
||||
let bias = bias.reshape((1, b, 1))?;
|
||||
Ok(x.broadcast_add(&bias)?)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Dropout {
|
||||
pr: f64,
|
||||
}
|
||||
|
||||
impl Dropout {
|
||||
fn new(pr: f64) -> Self {
|
||||
Self { pr }
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
// TODO
|
||||
Ok(x.clone())
|
||||
}
|
||||
}
|
||||
|
||||
// This layer norm version handles both weight and bias so removes the mean.
|
||||
struct LayerNorm {
|
||||
weight: Tensor,
|
||||
bias: Tensor,
|
||||
eps: f64,
|
||||
}
|
||||
|
||||
impl LayerNorm {
|
||||
fn load(size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let weight = vb.get(size, &format!("{p}.weight"))?;
|
||||
let bias = vb.get(size, &format!("{p}.bias"))?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias,
|
||||
eps: 1e-5,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
|
||||
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
|
||||
let x = x.broadcast_sub(&mean_x)?;
|
||||
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
|
||||
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
||||
let x = x_normed
|
||||
.broadcast_mul(&self.weight)?
|
||||
.broadcast_add(&self.bias)?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
|
||||
struct MultiHeadAttention {
|
||||
query: Linear,
|
||||
key: Linear,
|
||||
value: Linear,
|
||||
out: Linear,
|
||||
n_head: usize,
|
||||
}
|
||||
|
||||
impl MultiHeadAttention {
|
||||
fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?;
|
||||
let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?;
|
||||
let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?;
|
||||
let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?;
|
||||
Ok(Self {
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
out,
|
||||
n_head,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
let q = self.query.forward(x)?;
|
||||
let k = self.key.forward(xa.unwrap_or(x))?;
|
||||
let v = self.value.forward(xa.unwrap_or(x))?;
|
||||
let wv = self.qkv_attention(&q, &k, &v, mask)?;
|
||||
let out = self.out.forward(&wv)?;
|
||||
Ok(out)
|
||||
}
|
||||
|
||||
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let (n_batch, n_ctx, n_state) = x.shape().r3()?;
|
||||
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
|
||||
Ok(x.reshape(target_dims)?.transpose(1, 2)?)
|
||||
}
|
||||
|
||||
fn qkv_attention(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
v: &Tensor,
|
||||
mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let (_, n_ctx, n_state) = q.shape().r3()?;
|
||||
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
|
||||
let q = (self.reshape_head(q)? * scale)?;
|
||||
let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
|
||||
let v = self.reshape_head(v)?.contiguous()?;
|
||||
let mut qk = q.matmul(&k)?;
|
||||
if let Some(mask) = mask {
|
||||
let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
|
||||
qk = qk.broadcast_add(&mask)?
|
||||
}
|
||||
let w = qk.softmax(qk.rank() - 1)?;
|
||||
let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?;
|
||||
Ok(wv)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
|
||||
struct ResidualAttentionBlock {
|
||||
attn: MultiHeadAttention,
|
||||
attn_ln: LayerNorm,
|
||||
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
|
||||
mlp_linear1: Linear,
|
||||
mlp_linear2: Linear,
|
||||
mlp_ln: LayerNorm,
|
||||
}
|
||||
|
||||
impl ResidualAttentionBlock {
|
||||
fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||
let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?;
|
||||
let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?;
|
||||
let cross_attn = if ca {
|
||||
let cross_attn =
|
||||
MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?;
|
||||
let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?;
|
||||
Some((cross_attn, cross_attn_ln))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let n_mlp = n_state * 4;
|
||||
let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?;
|
||||
let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?;
|
||||
let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?;
|
||||
Ok(Self {
|
||||
attn,
|
||||
attn_ln,
|
||||
cross_attn,
|
||||
mlp_linear1,
|
||||
mlp_linear2,
|
||||
mlp_ln,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
|
||||
let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?;
|
||||
let mut x = (x + attn)?;
|
||||
if let Some((attn, ln)) = &self.cross_attn {
|
||||
x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?;
|
||||
}
|
||||
let mlp = self.mlp_linear2.forward(
|
||||
&self
|
||||
.mlp_linear1
|
||||
.forward(&self.mlp_ln.forward(&x)?)?
|
||||
.gelu()?,
|
||||
)?;
|
||||
Ok((x + mlp)?)
|
||||
}
|
||||
}
|
||||
|
||||
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
|
||||
let max_timescale = 10000f32;
|
||||
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
|
||||
let inv_timescales: Vec<_> = (0..channels / 2)
|
||||
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
|
||||
.collect();
|
||||
let arange: Vec<_> = (0..length).map(|c| c as f32).collect();
|
||||
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
|
||||
let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?;
|
||||
let sh = (length, channels / 2);
|
||||
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
|
||||
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
|
||||
Ok(sincos)
|
||||
}
|
||||
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
|
||||
pub struct AudioEncoder {
|
||||
conv1: Conv1D,
|
||||
conv2: Conv1D,
|
||||
positional_embedding: Tensor,
|
||||
blocks: Vec<ResidualAttentionBlock>,
|
||||
ln_post: LayerNorm,
|
||||
}
|
||||
|
||||
impl AudioEncoder {
|
||||
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let n_state = cfg.n_audio_state;
|
||||
let n_head = cfg.n_audio_head;
|
||||
let n_ctx = cfg.n_audio_ctx;
|
||||
let cfg1 = ConvConfig {
|
||||
padding: 1,
|
||||
stride: 1,
|
||||
};
|
||||
let cfg2 = ConvConfig {
|
||||
padding: 1,
|
||||
stride: 2,
|
||||
};
|
||||
let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?;
|
||||
let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?;
|
||||
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?;
|
||||
let blocks = (0..cfg.n_audio_layer)
|
||||
.map(|i| {
|
||||
ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb)
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?;
|
||||
Ok(Self {
|
||||
conv1,
|
||||
conv2,
|
||||
positional_embedding,
|
||||
blocks,
|
||||
ln_post,
|
||||
})
|
||||
}
|
||||
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = self.conv1.forward(x)?.gelu()?;
|
||||
let x = self.conv2.forward(&x)?.gelu()?;
|
||||
let x = x.transpose(1, 2)?;
|
||||
let mut x = x.broadcast_add(&self.positional_embedding)?;
|
||||
for block in self.blocks.iter() {
|
||||
x = block.forward(&x, None, None)?
|
||||
}
|
||||
let x = self.ln_post.forward(&x)?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
|
||||
pub struct TextDecoder {
|
||||
token_embedding: Embedding,
|
||||
positional_embedding: Tensor,
|
||||
blocks: Vec<ResidualAttentionBlock>,
|
||||
ln: LayerNorm,
|
||||
mask: Tensor,
|
||||
}
|
||||
|
||||
impl TextDecoder {
|
||||
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let n_state = cfg.n_text_state;
|
||||
let n_head = cfg.n_text_head;
|
||||
let n_ctx = cfg.n_text_ctx;
|
||||
let token_embedding =
|
||||
Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?;
|
||||
let positional_embedding =
|
||||
vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?;
|
||||
let blocks = (0..cfg.n_text_layer)
|
||||
.map(|i| {
|
||||
ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb)
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?;
|
||||
let mask: Vec<_> = (0..n_ctx)
|
||||
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
|
||||
.collect();
|
||||
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?;
|
||||
|
||||
Ok(Self {
|
||||
token_embedding,
|
||||
positional_embedding,
|
||||
blocks,
|
||||
ln,
|
||||
mask,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
|
||||
let x_dims = x.dims();
|
||||
let last = x_dims[x_dims.len() - 1];
|
||||
let token_embedding = self.token_embedding.forward(x)?;
|
||||
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
|
||||
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
|
||||
for block in self.blocks.iter() {
|
||||
x = block.forward(&x, Some(xa), Some(&self.mask))?;
|
||||
}
|
||||
let x = self.ln.forward(&x)?;
|
||||
let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?;
|
||||
let logits = x.matmul(&w.t()?)?;
|
||||
Ok(logits)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
|
||||
pub struct Whisper {
|
||||
pub encoder: AudioEncoder,
|
||||
pub decoder: TextDecoder,
|
||||
pub config: Config,
|
||||
}
|
||||
|
||||
impl Whisper {
|
||||
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
|
||||
let encoder = AudioEncoder::load("encoder", vb, &config)?;
|
||||
let decoder = TextDecoder::load("decoder", vb, &config)?;
|
||||
Ok(Self {
|
||||
encoder,
|
||||
decoder,
|
||||
config,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
|
||||
let enc = self.encoder.forward(mel)?;
|
||||
let dec = self.decoder.forward(tokens, &enc)?;
|
||||
Ok(dec)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user