Implement hybrid Tausworthe + LCG psuedo random number generator in metal

This commit is contained in:
Ivar Flakstad
2024-01-05 13:27:59 +01:00
parent 1e442d4bb9
commit 955e63c803
6 changed files with 341 additions and 12 deletions

View File

@ -49,3 +49,7 @@ metal = ["dep:metal", "dep:candle-metal-kernels"]
name = "matmul"
harness = false
[[bench]]
name = "random"
harness = false

View File

@ -0,0 +1,41 @@
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, criterion_main, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor) {
a.rand_like(0.0, 1.0).unwrap();
}
fn criterion_benchmark(c: &mut Criterion) {
let b = 1;
let rows = 2048;
let cols = 2048;
let device = Device::new_metal(0).unwrap();
let dtype = DType::F32;
let tensor = Tensor::zeros((b, rows, cols), dtype, &device).unwrap();
let flops = b * rows * cols;
let mut group = c.benchmark_group("random_metal");
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |benches| {
benches.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&tensor));
}
if let Device::Metal(device) = &device {
device.wait_until_completed().unwrap();
} else {
panic!("Expected metal device");
}
start.elapsed()
})
});
group.finish();
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

View File

@ -8,7 +8,7 @@ use metal;
use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
use std::collections::HashMap;
use std::path::Path;
use std::sync::{Arc, RwLock, TryLockError};
use std::sync::{Arc, Mutex, RwLock, TryLockError};
/// Simple way to catch lock error without
/// depending on T
@ -106,6 +106,8 @@ pub struct MetalDevice {
/// Whenever we actually allocate a new buffer, we make a full sweep to cleanup unused buffers
/// (strong_count = 1).
buffers: AllocatedBuffers,
seed: Arc<Mutex<u64>>,
}
impl std::fmt::Debug for MetalDevice {
@ -1373,6 +1375,7 @@ impl BackendDevice for MetalDevice {
Ok(val) => val.parse()?,
_ => 20,
};
let seed = Arc::new(Mutex::new(299792458));
Ok(Self {
device,
fence,
@ -1382,11 +1385,14 @@ impl BackendDevice for MetalDevice {
compute_per_buffer,
buffers,
kernels,
seed
})
}
fn set_seed(&self, _seed: u64) -> Result<()> {
crate::bail!("set_seed")
fn set_seed(&self, seed: u64) -> Result<()> {
let mut s = self.seed.try_lock().map_err(MetalError::from)?;
*s = seed;
Ok(())
}
fn location(&self) -> crate::DeviceLocation {
@ -1441,12 +1447,30 @@ impl BackendDevice for MetalDevice {
&self,
shape: &Shape,
dtype: DType,
mean: f64,
stddev: f64,
min: f64,
max: f64,
) -> Result<Self::Storage> {
// TODO is there a better way ?
let cpu_storage = crate::cpu_backend::CpuDevice.rand_uniform(shape, dtype, mean, stddev)?;
self.storage_from_cpu_storage(&cpu_storage)
let name = match dtype {
DType::F32 => "rand_uniform_f32",
DType::F16 => "rand_uniform_f16",
DType::BF16 => "rand_uniform_bf16",
dtype => crate::bail!("rand_uniform not implemented for {dtype:?}"),
};
let buffer = self.new_buffer(shape.elem_count(), dtype, "rand_uniform")?;
let command_buffer = self.command_buffer()?;
candle_metal_kernels::call_random_uniform(
&self.device,
&command_buffer,
&self.kernels,
name,
*self.seed.lock().unwrap(),
min as f32,
max as f32,
shape.elem_count(),
&buffer
).map_err(MetalError::from)?;
Ok(Self::Storage::new(buffer, self.clone(), dtype))
}
fn rand_normal(

View File

@ -12,8 +12,9 @@ const UNARY: &str = include_str!("unary.metal");
const BINARY: &str = include_str!("binary.metal");
const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const REDUCE: &str = include_str!("reduce.metal");
const CONV: &str = include_str!("conv.metal");
const REDUCE: &str = include_str!("reduce.metal");
const RANDOM: &str = include_str!("random.metal");
const MFA: &[u8] = include_bytes!("libMetalFlashAttention.metallib");
/// Most kernels apply similarly across the tensors
@ -45,7 +46,7 @@ fn set_param<P: EncoderParam>(encoder: &ComputeCommandEncoderRef, position: u64,
/// Helper functions to create the various objects on the compute command encoder
/// on a single line.
/// Prevents getting wrong some arguments number and mixing length and size in bytes.
trait EncoderParam {
pub trait EncoderParam {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self);
}
macro_rules! primitive {
@ -61,8 +62,10 @@ macro_rules! primitive {
}
};
}
primitive!(bool);
primitive!(usize);
primitive!(u32);
primitive!(u64);
primitive!(f32);
impl<T> EncoderParam for &[T] {
@ -117,6 +120,7 @@ pub enum Source {
Reduce,
Mfa,
Conv,
Random,
}
macro_rules! ops{
@ -228,6 +232,7 @@ impl Kernels {
Source::Cast => CAST,
Source::Reduce => REDUCE,
Source::Conv => CONV,
Source::Random => RANDOM,
Source::Mfa => panic!("Invalid lib"),
}
}
@ -1566,5 +1571,69 @@ fn divide(m: usize, b: usize) -> NSUInteger {
((m + b - 1) / b) as NSUInteger
}
#[allow(clippy::too_many_arguments)]
pub fn call_random_uniform(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
name: &'static str,
seed: u64,
min: f32,
max: f32,
length: usize,
buffer: &Buffer,
) -> Result<(), MetalKernelError> {
if min >= max {
return Err(MetalKernelError::LoadLibraryError(
"min must be less than max".to_string(),
));
}
let size: usize = match name {
"rand_uniform_f32" => 4,
"rand_uniform_f16" | "rand_uniform_bf16" => 2,
_ => Err(MetalKernelError::LoadLibraryError(format!(
"{name} is not a valid kernel for random"
)))?,
};
let elems_per_key = length;
let bytes_per_key = size * elems_per_key;
let out_per_key = (bytes_per_key + 4 - 1) / 4;
let half_size = out_per_key / 2;
let odd = length % 2 != 0;
let pipeline = kernels.load_pipeline(device, Source::Random, name)?;
let encoder = command_buffer.new_compute_command_encoder();
let thread_group_count = MTLSize {
width: length as u64,
height: half_size as u64 + odd as u64,
depth: 1,
};
let threads = std::cmp::min(
(half_size + odd as usize) as NSUInteger,
pipeline.max_total_threads_per_threadgroup(),
);
let thread_group_size = MTLSize {
width: threads,
height: 1,
depth: 1,
};
encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
set_params!(encoder, (length, seed, min, max, buffer));
encoder.use_resource(buffer, metal::MTLResourceUsage::Write);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.update_fence(&kernels.fence);
encoder.end_encoding();
Ok(())
}
#[cfg(test)]
mod tests;

View File

@ -0,0 +1,139 @@
#include <metal_stdlib>
using namespace metal;
// Constants
// 2^32 and 1/2^32. Useful for converting between float and uint.
static constexpr constant ulong UNIF01_NORM32 = 4294967296;
static constexpr constant float UNIF01_INV32 = 2.328306436538696289e-10;
// 2 * pi
static constexpr constant float TWO_PI = 2.0 * M_PI_F;
static constexpr constant int3 S1 = {13, 19, 12};
static constexpr constant int3 S2 = {2, 25, 4};
static constexpr constant int3 S3 = {3, 11, 17};
static constexpr constant uint64_t PHI[16] = {
0x9E3779B97F4A7C15,
0xF39CC0605CEDC834,
0x1082276BF3A27251,
0xF86C6A11D0C18E95,
0x2767F0B153D27B7F,
0x0347045B5BF1827F,
0x01886F0928403002,
0xC1D64BA40F335E36,
0xF06AD7AE9717877E,
0x85839D6EFFBD7DC6,
0x64D325D1C5371682,
0xCADD0CCCFDFFBBE1,
0x626E33B8D04B4331,
0xBBF73C790D94F79D,
0x471C4AB3ED3D82A5,
0xFEC507705E4AE6E5,
};
// Combined Tausworthe and LCG Random Number Generator.
// https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application
// https://indico.cern.ch/event/93877/contributions/2118070/attachments/1104200/1575343/acat3_revised_final.pdf
class HybridTaus {
private:
thread float seed;
// Generate seeds for each thread.
thread uint4 seed_per_thread(const ulong4 seeds) {
return uint4(ulong4(seeds) * ulong4(PHI[0], PHI[1], PHI[2], PHI[3]) * ulong4(1099087573UL));
}
// Tausworthe generator.
thread uint taus(const uint z, const int3 s, const uint M) {
uint b = (((z << s.x) ^ z) >> s.y);
return (((z & M) << s.z) ^ b);
}
// LCG generator.
thread uint lcg(const uint z) {
return (1664525 * z + 1013904223UL);
}
public:
thread HybridTaus(const ulong4 seeds) {
uint4 seed = this->seed_per_thread(seeds);
// Seed #1
uint z1 = taus(seed.x, S1, 4294967294UL);
uint z2 = taus(seed.y, S2, 4294967288UL);
uint z3 = taus(seed.z, S3, 4294967280UL);
uint z4 = lcg(seed.x);
// Seed #2
uint r1 = (z1^z2^z3^z4^seed.y);
z1 = taus(r1, S1, 429496729UL);
z2 = taus(r1, S2, 4294967288UL);
z3 = taus(r1, S3, 429496280UL);
z4 = lcg(r1);
// Seed #3
r1 = (z1^z2^z3^z4^seed.z);
z1 = taus(r1, S1, 429496729UL);
z2 = taus(r1, S2, 4294967288UL);
z3 = taus(r1, S3, 429496280UL);
z4 = lcg(r1);
// Seed #4
r1 = (z1^z2^z3^z4^seed.w);
z1 = taus(r1, S1, 429496729UL);
z2 = taus(r1, S2, 4294967288UL);
z3 = taus(r1, S3, 429496280UL);
z4 = lcg(r1);
this->seed = (z1^z2^z3^z4) * UNIF01_INV32;
}
thread float rand() {
uint seed = this->seed * UNIF01_NORM32;
uint z1 = taus(seed, S1, 429496729UL);
uint z2 = taus(seed, S2, 4294967288UL);
uint z3 = taus(seed, S3, 429496280UL);
uint z4 = lcg(seed);
thread float old_seed = this->seed;
this->seed = (z1^z2^z3^z4) * UNIF01_INV32;
return old_seed;
}
};
template<typename T> METAL_FUNC void rand_uniform(
constant size_t &elem_count,
constant ulong &seed,
constant float &min,
constant float &max,
device T *out,
uint tid [[thread_position_in_grid]]
) {
if (tid >= elem_count) {
return;
}
float diff = max - min;
HybridTaus rng = HybridTaus({seed, tid, 1, 1});
out[tid] = static_cast<T>(rng.rand() * diff + min);
}
#define UNIFORM_OP(NAME, T) \
kernel void rand_uniform_##NAME( \
constant size_t &elem_count, \
constant ulong &seed, \
constant float &min, \
constant float &max, \
device T *out, \
uint tid [[thread_position_in_grid]] \
) { \
rand_uniform<T>(elem_count, seed, min, max, out, tid); \
} \
#define RANDOM_OPS(NAME, T) \
UNIFORM_OP(NAME, T) \
RANDOM_OPS(f32, float)
RANDOM_OPS(f16, half)
#if __METAL_VERSION__ >= 310
RANDOM_OPS(bf16, bfloat)
#endif

View File

@ -11,7 +11,7 @@ fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> {
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
let options = MTLResourceOptions::StorageModeManaged;
let ptr = data.as_ptr() as *const core::ffi::c_void;
let ptr = data.as_ptr() as *const c_void;
let size = (data.len() * std::mem::size_of::<T>()) as u64;
device.new_buffer_with_data(ptr, size, options)
}
@ -590,7 +590,6 @@ fn softmax() {
}
let results = run_softmax(&v, last_dim, "softmax_f32");
let results = approx(results, 4);
println!("{results:?}");
assert_eq!(
results.iter().map(|&s| s.round() as usize).sum::<usize>(),
n
@ -806,3 +805,56 @@ fn gemm() {
vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0]
);
}
fn run_random<T: Clone>(seed: u64, shape: &[usize], name: &'static str, min: f32, max: f32) -> Vec<T> {
let device = device();
let fence = device.new_fence();
let kernels = Kernels::new(fence);
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
let length = shape.iter().product::<usize>();
let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_random_uniform(
&device,
command_buffer,
&kernels,
name,
seed,
min,
max,
length,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, length)
}
#[test]
fn random() {
use std::fs::File;
use std::io::prelude::*;
let shape = vec![1024, 4];
let seed = 299792458;
let min = -30.0;
let max = 30.0;
let results = run_random::<f32>(seed, &shape, "rand_uniform_f32", min, max);
for &v in &results {
assert!(v >= min && v <= max);
}
// Writing bytes to file for testing with ENT
// https://www.fourmilab.ch/random/
// TODO: Remove before merge
let (head, body, tail) = unsafe { results.align_to::<u8>() };
assert!(head.is_empty());
assert!(tail.is_empty());
let mut file = File::create("test").unwrap();
file.write_all(body).unwrap();
}