Add ConvNeXt model. (#1604)

This commit is contained in:
Jani Monoses
2024-02-03 14:34:28 +02:00
committed by GitHub
parent 9e824ec810
commit a52d407ae6
4 changed files with 326 additions and 0 deletions

View File

@ -0,0 +1,22 @@
# candle-convnext
[A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
This candle implementation uses a pre-trained ConvNeXt network for inference. The
classification head has been trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example convnext --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which tiny
loaded image Tensor[dims 3, 224, 224; f32]
model built
mountain bike, all-terrain bike, off-roader: 84.09%
bicycle-built-for-two, tandem bicycle, tandem: 4.15%
maillot : 0.74%
crash helmet : 0.54%
unicycle, monocycle : 0.44%
```

View File

@ -0,0 +1,102 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::convnext;
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
Tiny,
Small,
Base,
Large,
XLarge,
}
impl Which {
fn model_filename(&self) -> String {
let name = match self {
Self::Tiny => "tiny",
Self::Small => "small",
Self::Base => "base",
Self::Large => "large",
Self::XLarge => "xlarge",
};
// The XLarge model only has an ImageNet-22K variant
let variant = match self {
Self::XLarge => "fb_in22k_ft_in1k",
_ => "fb_in1k",
};
format!("timm/convnext_{name}.{variant}")
}
fn config(&self) -> convnext::Config {
match self {
Self::Tiny => convnext::Config::tiny(),
Self::Small => convnext::Config::small(),
Self::Base => convnext::Config::base(),
Self::Large => convnext::Config::large(),
Self::XLarge => convnext::Config::xlarge(),
}
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(value_enum, long, default_value_t=Which::Tiny)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let model_name = args.which.model_filename();
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(model_name);
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = convnext::convnext(&args.which.config(), 1000, vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

View File

@ -0,0 +1,201 @@
//! ConvNeXt implementation.
//!
//! See "A ConvNet for the 2020s" Liu et al. 2022
//! <https://arxiv.org/abs/2201.03545>
//! Original code: https://github.com/facebookresearch/ConvNeXt/
//! timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/convnext.py
use candle::{Result, D};
use candle_nn::{conv2d, layer_norm, linear, Conv2dConfig, Func, VarBuilder};
#[derive(Clone)]
pub struct Config {
blocks: [usize; 4],
channels: [usize; 4],
}
impl Config {
pub fn tiny() -> Self {
Self {
blocks: [3, 3, 9, 3],
channels: [96, 192, 384, 768],
}
}
pub fn small() -> Self {
Self {
blocks: [3, 3, 27, 3],
channels: [96, 192, 384, 768],
}
}
pub fn base() -> Self {
Self {
blocks: [3, 3, 27, 3],
channels: [128, 256, 512, 1024],
}
}
pub fn large() -> Self {
Self {
blocks: [3, 3, 27, 3],
channels: [192, 384, 768, 1536],
}
}
pub fn xlarge() -> Self {
Self {
blocks: [3, 3, 27, 3],
channels: [256, 512, 1024, 2048],
}
}
}
// Initial downsampling via a patchify layer.
fn convnext_stem(out_channels: usize, vb: VarBuilder) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
stride: 4,
..Default::default()
};
let patchify = conv2d(3, out_channels, 4, conv2d_cfg, vb.pp(0))?;
let norm = layer_norm(out_channels, 1e-6, vb.pp(1))?;
Ok(Func::new(move |xs| {
// The layer norm works with channels-last format.
let xs = xs
.apply(&patchify)?
.permute((0, 2, 3, 1))?
.apply(&norm)?
.permute((0, 3, 1, 2))?;
Ok(xs)
}))
}
// Downsampling applied after the stages.
fn convnext_downsample(dim: usize, vb: VarBuilder) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
stride: 2,
..Default::default()
};
let norm = layer_norm(dim / 2, 1e-5, vb.pp(0))?;
let conv = conv2d(dim / 2, dim, 2, conv2d_cfg, vb.pp(1))?;
Ok(Func::new(move |xs| {
let xs = xs
.permute((0, 2, 3, 1))?
.apply(&norm)?
.permute((0, 3, 1, 2))?
.apply(&conv)?;
Ok(xs)
}))
}
// MLP equivalent of pointwise convolutions.
fn convnext_mlp(dim: usize, vb: VarBuilder) -> Result<Func<'static>> {
let fc1 = linear(dim, 4 * dim, vb.pp("fc1"))?;
let fc2 = linear(4 * dim, dim, vb.pp("fc2"))?;
Ok(Func::new(move |xs| {
let xs = xs.apply(&fc1)?.gelu_erf()?.apply(&fc2)?;
Ok(xs)
}))
}
// A block consisting of a depthwise convolution, a MLP and layer scaling.
fn convnext_block(dim: usize, vb: VarBuilder) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
groups: dim,
padding: 3,
..Default::default()
};
let conv_dw = conv2d(dim, dim, 7, conv2d_cfg, vb.pp("conv_dw"))?;
let gamma = vb.get(dim, "gamma")?;
let mlp = convnext_mlp(dim, vb.pp("mlp"))?;
let norm = layer_norm(dim, 1e-6, vb.pp("norm"))?;
Ok(Func::new(move |xs| {
let residual = xs;
let xs = xs
.apply(&conv_dw)?
.permute((0, 2, 3, 1))?
.apply(&norm)?
.apply(&mlp)?
.broadcast_mul(&gamma)?
.permute((0, 3, 1, 2))?;
xs + residual
}))
}
// Each stage contains blocks and a downsampling layer for the previous stage.
fn convnext_stage(cfg: &Config, stage_idx: usize, vb: VarBuilder) -> Result<Func<'static>> {
let nblocks = cfg.blocks[stage_idx];
let mut blocks = Vec::with_capacity(nblocks);
let dim = cfg.channels[stage_idx];
if stage_idx > 0 {
blocks.push(convnext_downsample(dim, vb.pp("downsample"))?);
}
for block_idx in 0..nblocks {
blocks.push(convnext_block(dim, vb.pp(format!("blocks.{block_idx}")))?);
}
Ok(Func::new(move |xs| {
let mut xs = xs.clone();
for block in blocks.iter() {
xs = xs.apply(block)?
}
Ok(xs)
}))
}
fn convnext_head(outputs: usize, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
let norm = layer_norm(outputs, 1e-6, vb.pp("norm"))?;
let linear = linear(outputs, nclasses, vb.pp("fc"))?;
Ok(Func::new(move |xs| xs.apply(&norm)?.apply(&linear)))
}
// Build a convnext model for a given configuration.
fn convnext_model(
config: &Config,
nclasses: Option<usize>,
vb: VarBuilder,
) -> Result<Func<'static>> {
let head = match nclasses {
None => None,
Some(nclasses) => {
let head = convnext_head(config.channels[3], nclasses, vb.pp("head"))?;
Some(head)
}
};
let stem = convnext_stem(config.channels[0], vb.pp("stem"))?;
let vb = vb.pp("stages");
let stage1 = convnext_stage(config, 0, vb.pp(0))?;
let stage2 = convnext_stage(config, 1, vb.pp(1))?;
let stage3 = convnext_stage(config, 2, vb.pp(2))?;
let stage4 = convnext_stage(config, 3, vb.pp(3))?;
Ok(Func::new(move |xs| {
let xs = xs
.apply(&stem)?
.apply(&stage1)?
.apply(&stage2)?
.apply(&stage3)?
.apply(&stage4)?
.mean(D::Minus2)?
.mean(D::Minus1)?;
match &head {
None => Ok(xs),
Some(head) => xs.apply(head),
}
}))
}
pub fn convnext(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
convnext_model(cfg, Some(nclasses), vb)
}
pub fn convnext_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
convnext_model(cfg, None, vb)
}

View File

@ -3,6 +3,7 @@ pub mod bigcode;
pub mod blip;
pub mod blip_text;
pub mod convmixer;
pub mod convnext;
pub mod dinov2;
pub mod distilbert;
pub mod efficientnet;