mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Merge pull request #561 from patrickvonplaten/add_installation
Improve installation section and "get started"
This commit is contained in:
35
README.md
35
README.md
@ -10,14 +10,39 @@ and ease of use. Try our online demos:
|
||||
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2),
|
||||
[yolo](https://huggingface.co/spaces/lmz/candle-yolo).
|
||||
|
||||
```rust
|
||||
let a = Tensor::randn(0f32, 1., (2, 3), &Device::Cpu)?;
|
||||
let b = Tensor::randn(0f32, 1., (3, 4), &Device::Cpu)?;
|
||||
## Get started
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
println!("{c}");
|
||||
Make sure that you have [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) correctly installed as described in [**Installation**](https://huggingface.github.io/candle/guide/installation.html).
|
||||
|
||||
Let's see how to run a simple matrix multiplication.
|
||||
Write the following to your `myapp/src/main.rs` file:
|
||||
```rust
|
||||
use candle_core::{Device, Tensor};
|
||||
|
||||
fn main() -> Result<(), Box<dyn std::error::Error>> {
|
||||
let device = Device::Cpu;
|
||||
|
||||
let a = Tensor::randn(0f32, 1., (2, 3), &device)?;
|
||||
let b = Tensor::randn(0f32, 1., (3, 4), &device)?;
|
||||
|
||||
let c = a.matmul(&b)?;
|
||||
println!("{c}");
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
`cargo run` should display a tensor of shape `Tensor[[2, 4], f32]`.
|
||||
|
||||
|
||||
Having installed `candle` with Cuda support, simply define the `device` to be on GPU:
|
||||
|
||||
```diff
|
||||
- let device = Device::Cpu;
|
||||
+ let device = Device::new_cuda(0)?;
|
||||
```
|
||||
|
||||
For more advanced examples, please have a look at the following section.
|
||||
|
||||
## Check out our examples
|
||||
|
||||
Check out our [examples](./candle-examples/examples/):
|
||||
|
@ -1,6 +1,43 @@
|
||||
# Installation
|
||||
|
||||
Start by creating a new app:
|
||||
**With Cuda support**:
|
||||
|
||||
1. First, make sure that Cuda is correctly installed.
|
||||
- `nvcc --version` should print information about your Cuda compiler driver.
|
||||
- `nvidia-smi --query-gpu=compute_cap --format=csv` should print your GPUs compute capability, e.g. something
|
||||
like:
|
||||
|
||||
```bash
|
||||
compute_cap
|
||||
8.9
|
||||
```
|
||||
|
||||
If any of the above commands errors out, please make sure to update your Cuda version.
|
||||
|
||||
2. Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) with Cuda support.
|
||||
|
||||
Start by creating a new cargo:
|
||||
|
||||
```bash
|
||||
cargo new myapp
|
||||
cd myapp
|
||||
```
|
||||
|
||||
Make sure to add the `candle-core` crate with the cuda feature:
|
||||
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda"
|
||||
```
|
||||
|
||||
Run `cargo build` to make sure everything can be correctly built.
|
||||
|
||||
```bash
|
||||
cargo build
|
||||
```
|
||||
|
||||
**Without Cuda support**:
|
||||
|
||||
Create a new app and add [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as follows:
|
||||
|
||||
```bash
|
||||
cargo new myapp
|
||||
@ -8,17 +45,12 @@ cd myapp
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core
|
||||
```
|
||||
|
||||
At this point, candle will be built **without** CUDA support.
|
||||
To get CUDA support use the `cuda` feature
|
||||
```bash
|
||||
cargo add --git https://github.com/huggingface/candle.git candle-core --features cuda
|
||||
```
|
||||
|
||||
You can check everything works properly:
|
||||
Finally, run `cargo build` to make sure everything can be correctly built.
|
||||
|
||||
```bash
|
||||
cargo build
|
||||
```
|
||||
|
||||
**With mkl support**
|
||||
|
||||
You can also see the `mkl` feature which could be interesting to get faster inference on CPU. [Using mkl](./advanced/mkl.md)
|
||||
|
Reference in New Issue
Block a user