mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 02:16:37 +00:00
Add some more developed training examples. (#199)
* Use contiguous tensors for variables. * Sketch the mnist example. * Start adding the reduce ops. * Renaming. * Refactor the reduce operations. * Bugfix for the broadcasting vectorization.
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,6 +1,7 @@
|
||||
# Generated by Cargo
|
||||
# will have compiled files and executables
|
||||
debug/
|
||||
data/
|
||||
dist/
|
||||
target/
|
||||
|
||||
|
@ -16,7 +16,7 @@ pub(crate) trait BackendStorage: Sized {
|
||||
|
||||
fn elu(&self, _: &Layout, _: f64) -> Result<Self>;
|
||||
|
||||
fn sum(&self, _: &Layout, _: &[usize]) -> Result<Self>;
|
||||
fn reduce_op(&self, _: crate::op::ReduceOp, _: &Layout, _: &[usize]) -> Result<Self>;
|
||||
|
||||
fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()>;
|
||||
|
||||
|
@ -67,6 +67,8 @@ impl Tensor {
|
||||
Op::Reshape(node)
|
||||
| Op::Broadcast(node)
|
||||
| Op::Sum(node, _)
|
||||
| Op::Max(node, _)
|
||||
| Op::Min(node, _)
|
||||
| Op::ToDType(node)
|
||||
| Op::ToDevice(node)
|
||||
| Op::Transpose(node, _, _)
|
||||
@ -203,6 +205,12 @@ impl Tensor {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.broadcast_add(&grad)?
|
||||
}
|
||||
Op::Max(_args, _sum_dims) => {
|
||||
return Err(Error::BackwardNotSupported { op: "max" })
|
||||
}
|
||||
Op::Min(_args, _sum_dims) => {
|
||||
return Err(Error::BackwardNotSupported { op: "min" })
|
||||
}
|
||||
Op::ToDType(arg) => {
|
||||
let sum_grad = grads.or_insert(arg)?;
|
||||
*sum_grad = sum_grad.add(&grad.to_dtype(node.dtype())?)?
|
||||
|
@ -93,47 +93,52 @@ impl<'a> Map2 for WCond<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
struct Sum<'a> {
|
||||
struct Reduce<'a> {
|
||||
dst_shape: &'a Shape,
|
||||
sum_dims: &'a [usize],
|
||||
sum_dims_and_stride: Vec<(usize, usize)>,
|
||||
reduce_dims: &'a [usize],
|
||||
reduce_dims_and_stride: Vec<(usize, usize)>,
|
||||
op: crate::op::ReduceOp,
|
||||
}
|
||||
|
||||
impl<'a> Map1 for Sum<'a> {
|
||||
impl<'a> Map1 for Reduce<'a> {
|
||||
#[inline(always)]
|
||||
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
|
||||
match self.op {
|
||||
crate::op::ReduceOp::Min | crate::op::ReduceOp::Max => todo!(),
|
||||
crate::op::ReduceOp::Sum => (),
|
||||
}
|
||||
let mut dst = vec![T::zero(); self.dst_shape.elem_count()];
|
||||
match src_l.contiguous_offsets() {
|
||||
Some((o1, o2)) => {
|
||||
let src = &src[o1..o2];
|
||||
// Handle the case where we sum over the last dimensions separately as it is
|
||||
// Handle the case where we reduce over the last dimensions separately as it is
|
||||
// fairly common and easy to optimize. This rely on the layout being contiguous!
|
||||
// sum_dims is sorted, check if it is ranging from a to n-1.
|
||||
let sum_over_last_dims = self
|
||||
.sum_dims
|
||||
// reduce_dims is sorted, check if it is ranging from a to n-1.
|
||||
let reduce_over_last_dims = self
|
||||
.reduce_dims
|
||||
.iter()
|
||||
.rev()
|
||||
.enumerate()
|
||||
.all(|(i, &v)| v == src_l.shape().rank() - 1 - i);
|
||||
if sum_over_last_dims {
|
||||
let sum_sz = self
|
||||
.sum_dims_and_stride
|
||||
if reduce_over_last_dims {
|
||||
let reduce_sz = self
|
||||
.reduce_dims_and_stride
|
||||
.iter()
|
||||
.map(|(u, _)| u)
|
||||
.product::<usize>();
|
||||
let mut src_i = 0;
|
||||
for dst_v in dst.iter_mut() {
|
||||
for &s in src[src_i..src_i + sum_sz].iter() {
|
||||
for &s in src[src_i..src_i + reduce_sz].iter() {
|
||||
*dst_v += s
|
||||
}
|
||||
src_i += sum_sz
|
||||
src_i += reduce_sz
|
||||
}
|
||||
return Ok(dst);
|
||||
};
|
||||
for (unstr_index, &src) in src.iter().enumerate() {
|
||||
let mut dst_index = unstr_index;
|
||||
// Set the sum_dims indexes to 0.
|
||||
for &(dim, stride) in self.sum_dims_and_stride.iter() {
|
||||
// Set the reduce_dims indexes to 0.
|
||||
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
|
||||
// The compiler is able to optimize the following in a single divmod op.
|
||||
let (pre, post) = (dst_index / stride, dst_index % stride);
|
||||
dst_index = (pre / dim) * stride + post;
|
||||
@ -144,8 +149,8 @@ impl<'a> Map1 for Sum<'a> {
|
||||
None => {
|
||||
for (unstr_index, src_index) in src_l.strided_index().enumerate() {
|
||||
let mut dst_index = unstr_index;
|
||||
// Set the sum_dims indexes to 0.
|
||||
for &(dim, stride) in self.sum_dims_and_stride.iter() {
|
||||
// Set the reduce_dims indexes to 0.
|
||||
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
|
||||
// The compiler is able to optimize the following in a single divmod op.
|
||||
let (pre, post) = (dst_index / stride, dst_index % stride);
|
||||
dst_index = (pre / dim) * stride + post;
|
||||
@ -340,7 +345,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
|
||||
}
|
||||
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let rhs = &rhs[ob.start..];
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
@ -358,7 +363,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let rhs = &rhs[ob.start..];
|
||||
let rhs = &rhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = lhs[o_l1..o_l2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
@ -379,7 +384,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
|
||||
},
|
||||
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
|
||||
Some(ob) if ob.right_broadcast == 1 => {
|
||||
let lhs = &lhs[ob.start..];
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys: Vec<T> = Vec::with_capacity(el_count);
|
||||
let ys_to_set = ys.spare_capacity_mut();
|
||||
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
|
||||
@ -397,7 +402,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
|
||||
ys
|
||||
}
|
||||
Some(ob) => {
|
||||
let lhs = &lhs[ob.start..];
|
||||
let lhs = &lhs[ob.start..ob.start + ob.len];
|
||||
let mut ys = rhs[o_r1..o_r2].to_vec();
|
||||
for idx_l in 0..ob.left_broadcast {
|
||||
let start = idx_l * ob.len * ob.right_broadcast;
|
||||
@ -1010,25 +1015,31 @@ impl BackendStorage for CpuStorage {
|
||||
}
|
||||
}
|
||||
|
||||
fn sum(&self, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
|
||||
fn reduce_op(
|
||||
&self,
|
||||
op: crate::op::ReduceOp,
|
||||
layout: &Layout,
|
||||
reduce_dims: &[usize],
|
||||
) -> Result<Self> {
|
||||
let src_dims = layout.dims();
|
||||
let mut dst_dims = src_dims.to_vec();
|
||||
for &sum_dim in sum_dims.iter() {
|
||||
dst_dims[sum_dim] = 1;
|
||||
for &dim in reduce_dims.iter() {
|
||||
dst_dims[dim] = 1;
|
||||
}
|
||||
let dst_shape = Shape::from(dst_dims);
|
||||
let mut sum_dims = sum_dims.to_vec();
|
||||
// Sort the sum_dims as they have to be processed from left to right when converting the
|
||||
let mut reduce_dims = reduce_dims.to_vec();
|
||||
// Sort the reduce_dims as they have to be processed from left to right when converting the
|
||||
// indexes.
|
||||
sum_dims.sort();
|
||||
let sum_dims_and_stride: Vec<_> = sum_dims
|
||||
reduce_dims.sort();
|
||||
let reduce_dims_and_stride: Vec<_> = reduce_dims
|
||||
.iter()
|
||||
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
|
||||
.collect();
|
||||
Sum {
|
||||
Reduce {
|
||||
dst_shape: &dst_shape,
|
||||
sum_dims: &sum_dims,
|
||||
sum_dims_and_stride,
|
||||
reduce_dims: &reduce_dims,
|
||||
reduce_dims_and_stride,
|
||||
op,
|
||||
}
|
||||
.map(self, layout)
|
||||
}
|
||||
|
@ -955,10 +955,21 @@ impl BackendStorage for CudaStorage {
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
fn sum(&self, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
let slice = FastSum(sum_dims).map(&self.slice, &device, layout)?;
|
||||
Ok(Self { slice, device })
|
||||
fn reduce_op(
|
||||
&self,
|
||||
op: crate::op::ReduceOp,
|
||||
layout: &Layout,
|
||||
sum_dims: &[usize],
|
||||
) -> Result<Self> {
|
||||
match op {
|
||||
crate::op::ReduceOp::Sum => {
|
||||
let device = self.device().clone();
|
||||
let slice = FastSum(sum_dims).map(&self.slice, &device, layout)?;
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
crate::op::ReduceOp::Min => Err(CudaError::InternalError("TODO: implement min").into()),
|
||||
crate::op::ReduceOp::Max => Err(CudaError::InternalError("TODO: implement max").into()),
|
||||
}
|
||||
}
|
||||
|
||||
fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()> {
|
||||
|
@ -40,7 +40,7 @@ impl crate::backend::BackendStorage for CudaStorage {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
fn sum(&self, _: &Layout, _: &[usize]) -> Result<Self> {
|
||||
fn reduce_op(&self, _: crate::op::ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
|
||||
Err(Error::NotCompiledWithCudaSupport)
|
||||
}
|
||||
|
||||
|
@ -29,6 +29,8 @@ pub(crate) enum Op {
|
||||
add: f64,
|
||||
},
|
||||
Sum(Tensor, Vec<usize>),
|
||||
Max(Tensor, Vec<usize>),
|
||||
Min(Tensor, Vec<usize>),
|
||||
ToDType(Tensor),
|
||||
Broadcast(Tensor),
|
||||
Exp(Tensor),
|
||||
@ -354,3 +356,10 @@ impl UnaryOp for Relu {
|
||||
v
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum ReduceOp {
|
||||
Sum,
|
||||
Min,
|
||||
Max,
|
||||
}
|
||||
|
@ -80,14 +80,19 @@ impl Storage {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn sum(&self, layout: &Layout, s: &[usize]) -> Result<Self> {
|
||||
pub(crate) fn reduce_op(
|
||||
&self,
|
||||
op: crate::op::ReduceOp,
|
||||
layout: &Layout,
|
||||
s: &[usize],
|
||||
) -> Result<Self> {
|
||||
match self {
|
||||
Storage::Cpu(storage) => {
|
||||
let storage = storage.sum(layout, s)?;
|
||||
let storage = storage.reduce_op(op, layout, s)?;
|
||||
Ok(Self::Cpu(storage))
|
||||
}
|
||||
Self::Cuda(storage) => {
|
||||
let storage = storage.sum(layout, s)?;
|
||||
let storage = storage.reduce_op(op, layout, s)?;
|
||||
Ok(Self::Cuda(storage))
|
||||
}
|
||||
}
|
||||
|
@ -154,8 +154,14 @@ impl Tensor {
|
||||
device: &Device,
|
||||
is_variable: bool,
|
||||
) -> Result<Self> {
|
||||
let storage = device.ones(&crate::shape::SCALAR, dtype)?;
|
||||
from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
|
||||
if is_variable {
|
||||
let shape = shape.into();
|
||||
let storage = device.ones(&shape, dtype)?;
|
||||
Ok(from_storage(storage, shape, None, is_variable))
|
||||
} else {
|
||||
let storage = device.ones(&crate::shape::SCALAR, dtype)?;
|
||||
from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new tensor filled with ones.
|
||||
@ -192,8 +198,14 @@ impl Tensor {
|
||||
device: &Device,
|
||||
is_variable: bool,
|
||||
) -> Result<Self> {
|
||||
let storage = device.zeros(&crate::shape::SCALAR, dtype)?;
|
||||
from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
|
||||
if is_variable {
|
||||
let shape = shape.into();
|
||||
let storage = device.zeros(&shape, dtype)?;
|
||||
Ok(from_storage(storage, shape, None, is_variable))
|
||||
} else {
|
||||
let storage = device.zeros(&crate::shape::SCALAR, dtype)?;
|
||||
from_storage(storage, crate::shape::SCALAR, None, is_variable).broadcast_as(shape)
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new tensor filled with zeros.
|
||||
@ -593,9 +605,77 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sum_impl<D: Dims>(&self, sum_dims: D, keepdim: bool) -> Result<Self> {
|
||||
fn squeeze_dims(self, dims: &[usize]) -> Result<Self> {
|
||||
match dims {
|
||||
[] => Ok(self),
|
||||
[i] => self.squeeze(*i),
|
||||
dims => {
|
||||
let dims = self
|
||||
.dims()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(dim_idx, &v)| {
|
||||
if dims.contains(&dim_idx) {
|
||||
None
|
||||
} else {
|
||||
Some(v)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
self.reshape(dims)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn max_impl<D: Dims>(&self, max_dims: D, keepdim: bool) -> Result<Self> {
|
||||
let max_dims = max_dims.to_indexes(self.shape(), "max")?;
|
||||
let storage =
|
||||
self.storage()
|
||||
.reduce_op(crate::op::ReduceOp::Max, self.layout(), &max_dims)?;
|
||||
let op = if self.track_op() {
|
||||
Some(Op::Max(self.clone(), max_dims.to_vec()))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let mut dims = self.dims().to_vec();
|
||||
for &max_dim in max_dims.iter() {
|
||||
dims[max_dim] = 1
|
||||
}
|
||||
let max = from_storage(storage, dims, op, false);
|
||||
if keepdim {
|
||||
Ok(max)
|
||||
} else {
|
||||
max.squeeze_dims(&max_dims)
|
||||
}
|
||||
}
|
||||
|
||||
fn min_impl<D: Dims>(&self, min_dims: D, keepdim: bool) -> Result<Self> {
|
||||
let min_dims = min_dims.to_indexes(self.shape(), "min")?;
|
||||
let storage =
|
||||
self.storage()
|
||||
.reduce_op(crate::op::ReduceOp::Min, self.layout(), &min_dims)?;
|
||||
let op = if self.track_op() {
|
||||
Some(Op::Min(self.clone(), min_dims.to_vec()))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let mut dims = self.dims().to_vec();
|
||||
for &min_dim in min_dims.iter() {
|
||||
dims[min_dim] = 1
|
||||
}
|
||||
let min = from_storage(storage, dims, op, false);
|
||||
if keepdim {
|
||||
Ok(min)
|
||||
} else {
|
||||
min.squeeze_dims(&min_dims)
|
||||
}
|
||||
}
|
||||
|
||||
fn sum_impl<D: Dims>(&self, sum_dims: D, keepdim: bool) -> Result<Self> {
|
||||
let sum_dims = sum_dims.to_indexes(self.shape(), "sum")?;
|
||||
let storage = self.storage().sum(self.layout(), &sum_dims)?;
|
||||
let storage =
|
||||
self.storage()
|
||||
.reduce_op(crate::op::ReduceOp::Sum, self.layout(), &sum_dims)?;
|
||||
let op = if self.track_op() {
|
||||
Some(Op::Sum(self.clone(), sum_dims.to_vec()))
|
||||
} else {
|
||||
@ -609,25 +689,7 @@ impl Tensor {
|
||||
if keepdim {
|
||||
Ok(sum)
|
||||
} else {
|
||||
match sum_dims.as_slice() {
|
||||
[] => Ok(sum),
|
||||
[i] => sum.squeeze(*i),
|
||||
sum_dims => {
|
||||
let dims = sum
|
||||
.dims()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(dim_idx, &v)| {
|
||||
if sum_dims.contains(&dim_idx) {
|
||||
None
|
||||
} else {
|
||||
Some(v)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
sum.reshape(dims)
|
||||
}
|
||||
}
|
||||
sum.squeeze_dims(&sum_dims)
|
||||
}
|
||||
}
|
||||
|
||||
@ -659,6 +721,22 @@ impl Tensor {
|
||||
self.sum_impl(sum_dims, false)
|
||||
}
|
||||
|
||||
pub fn max_keepdim<D: Dims>(&self, max_dims: D) -> Result<Self> {
|
||||
self.max_impl(max_dims, true)
|
||||
}
|
||||
|
||||
pub fn max<D: Dims>(&self, max_dims: D) -> Result<Self> {
|
||||
self.max_impl(max_dims, false)
|
||||
}
|
||||
|
||||
pub fn min_keepdim<D: Dims>(&self, min_dims: D) -> Result<Self> {
|
||||
self.min_impl(min_dims, true)
|
||||
}
|
||||
|
||||
pub fn min<D: Dims>(&self, min_dims: D) -> Result<Self> {
|
||||
self.min_impl(min_dims, false)
|
||||
}
|
||||
|
||||
/// Applies a 1D convolution over the input tensor.
|
||||
pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result<Self> {
|
||||
let (c_out, c_in_k, k_size) = kernel.shape().r3()?;
|
||||
|
44
candle-examples/examples/simple-training/main.rs
Normal file
44
candle-examples/examples/simple-training/main.rs
Normal file
@ -0,0 +1,44 @@
|
||||
// This should rearch 91.5% accuracy.
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Var, D};
|
||||
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const LABELS: usize = 10;
|
||||
|
||||
pub fn main() -> Result<()> {
|
||||
let dev = candle::Device::cuda_if_available(0)?;
|
||||
let m = candle_nn::vision::mnist::load_dir("data")?;
|
||||
println!("train-images: {:?}", m.train_images.shape());
|
||||
println!("train-labels: {:?}", m.train_labels.shape());
|
||||
println!("test-images: {:?}", m.test_images.shape());
|
||||
println!("test-labels: {:?}", m.test_labels.shape());
|
||||
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
|
||||
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
|
||||
let sgd = candle_nn::SGD::new(&[&ws, &bs], 0.1);
|
||||
for epoch in 1..200 {
|
||||
let logits = m.train_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
let loss = logits.softmax(D::Minus1)?;
|
||||
// TODO: log_softmax + let loss = loss.nll_loss(&m.train_labels);
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
let _test_logits = m.test_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
/* TODO
|
||||
let test_accuracy = test_logits
|
||||
.argmax(Some(-1), false)
|
||||
.eq_tensor(&m.test_labels)
|
||||
.to_kind(Kind::Float)
|
||||
.mean(Kind::Float)
|
||||
.double_value(&[]);
|
||||
*/
|
||||
let test_accuracy = 0.;
|
||||
println!(
|
||||
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
||||
loss.to_scalar::<f32>()?,
|
||||
100. * test_accuracy
|
||||
)
|
||||
}
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user