Add some more developed training examples. (#199)

* Use contiguous tensors for variables.

* Sketch the mnist example.

* Start adding the reduce ops.

* Renaming.

* Refactor the reduce operations.

* Bugfix for the broadcasting vectorization.
This commit is contained in:
Laurent Mazare
2023-07-19 16:37:52 +02:00
committed by GitHub
parent 67e20c3792
commit cb687b4897
10 changed files with 232 additions and 65 deletions

View File

@ -93,47 +93,52 @@ impl<'a> Map2 for WCond<'a> {
}
}
struct Sum<'a> {
struct Reduce<'a> {
dst_shape: &'a Shape,
sum_dims: &'a [usize],
sum_dims_and_stride: Vec<(usize, usize)>,
reduce_dims: &'a [usize],
reduce_dims_and_stride: Vec<(usize, usize)>,
op: crate::op::ReduceOp,
}
impl<'a> Map1 for Sum<'a> {
impl<'a> Map1 for Reduce<'a> {
#[inline(always)]
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
match self.op {
crate::op::ReduceOp::Min | crate::op::ReduceOp::Max => todo!(),
crate::op::ReduceOp::Sum => (),
}
let mut dst = vec![T::zero(); self.dst_shape.elem_count()];
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
// Handle the case where we sum over the last dimensions separately as it is
// Handle the case where we reduce over the last dimensions separately as it is
// fairly common and easy to optimize. This rely on the layout being contiguous!
// sum_dims is sorted, check if it is ranging from a to n-1.
let sum_over_last_dims = self
.sum_dims
// reduce_dims is sorted, check if it is ranging from a to n-1.
let reduce_over_last_dims = self
.reduce_dims
.iter()
.rev()
.enumerate()
.all(|(i, &v)| v == src_l.shape().rank() - 1 - i);
if sum_over_last_dims {
let sum_sz = self
.sum_dims_and_stride
if reduce_over_last_dims {
let reduce_sz = self
.reduce_dims_and_stride
.iter()
.map(|(u, _)| u)
.product::<usize>();
let mut src_i = 0;
for dst_v in dst.iter_mut() {
for &s in src[src_i..src_i + sum_sz].iter() {
for &s in src[src_i..src_i + reduce_sz].iter() {
*dst_v += s
}
src_i += sum_sz
src_i += reduce_sz
}
return Ok(dst);
};
for (unstr_index, &src) in src.iter().enumerate() {
let mut dst_index = unstr_index;
// Set the sum_dims indexes to 0.
for &(dim, stride) in self.sum_dims_and_stride.iter() {
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
@ -144,8 +149,8 @@ impl<'a> Map1 for Sum<'a> {
None => {
for (unstr_index, src_index) in src_l.strided_index().enumerate() {
let mut dst_index = unstr_index;
// Set the sum_dims indexes to 0.
for &(dim, stride) in self.sum_dims_and_stride.iter() {
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
@ -340,7 +345,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
}
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let rhs = &rhs[ob.start..];
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
@ -358,7 +363,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
ys
}
Some(ob) => {
let rhs = &rhs[ob.start..];
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys = lhs[o_l1..o_l2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
@ -379,7 +384,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
},
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let lhs = &lhs[ob.start..];
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
@ -397,7 +402,7 @@ fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>
ys
}
Some(ob) => {
let lhs = &lhs[ob.start..];
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys = rhs[o_r1..o_r2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
@ -1010,25 +1015,31 @@ impl BackendStorage for CpuStorage {
}
}
fn sum(&self, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
fn reduce_op(
&self,
op: crate::op::ReduceOp,
layout: &Layout,
reduce_dims: &[usize],
) -> Result<Self> {
let src_dims = layout.dims();
let mut dst_dims = src_dims.to_vec();
for &sum_dim in sum_dims.iter() {
dst_dims[sum_dim] = 1;
for &dim in reduce_dims.iter() {
dst_dims[dim] = 1;
}
let dst_shape = Shape::from(dst_dims);
let mut sum_dims = sum_dims.to_vec();
// Sort the sum_dims as they have to be processed from left to right when converting the
let mut reduce_dims = reduce_dims.to_vec();
// Sort the reduce_dims as they have to be processed from left to right when converting the
// indexes.
sum_dims.sort();
let sum_dims_and_stride: Vec<_> = sum_dims
reduce_dims.sort();
let reduce_dims_and_stride: Vec<_> = reduce_dims
.iter()
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
.collect();
Sum {
Reduce {
dst_shape: &dst_shape,
sum_dims: &sum_dims,
sum_dims_and_stride,
reduce_dims: &reduce_dims,
reduce_dims_and_stride,
op,
}
.map(self, layout)
}