mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add the CSM model. (#2862)
* Add the CSM model. * Add some code to load the model. * Load the text tokenizer. * Add frame generation. * Get the sampling to work. * Rope fix. * Autoregressive generation. * Generate some audio file. * Use the actual prompt. * Support multiple turns. * Add a very barebone readme. * Move some of the shared bits to the model.
This commit is contained in:
14
candle-examples/examples/csm/README.md
Normal file
14
candle-examples/examples/csm/README.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Conversational Speech Model (CSM)
|
||||
|
||||
CSM is a speech generation model from Sesame,
|
||||
[SesameAILabs/csm](https://github.com/SesameAILabs/csm).
|
||||
|
||||
It can generate a conversational speech between two different speakers.
|
||||
The speakers turn are delimited by the `|` character in the prompt.
|
||||
|
||||
```bash
|
||||
cargo run --example csm --features cuda -r -- \
|
||||
--voices voices.safetensors \
|
||||
--prompt "Hey how are you doing?|Pretty good, pretty good. How about you?"
|
||||
```
|
||||
|
243
candle-examples/examples/csm/main.rs
Normal file
243
candle-examples/examples/csm/main.rs
Normal file
@ -0,0 +1,243 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::csm::{Config, Model};
|
||||
|
||||
use candle::{DType, IndexOp, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
|
||||
enum Which {
|
||||
#[value(name = "1b")]
|
||||
Csm1b,
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
|
||||
/// The prompt to be used for the generation, use a | to separate the speakers.
|
||||
#[arg(long, default_value = "Hey how are you doing today?")]
|
||||
prompt: String,
|
||||
|
||||
/// The voices to be used, in safetensors format.
|
||||
#[arg(long)]
|
||||
voices: String,
|
||||
|
||||
/// The output file using the wav format.
|
||||
#[arg(long, default_value = "out.wav")]
|
||||
out_file: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long, default_value_t = 0.7)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Only sample among the top K samples.
|
||||
#[arg(long)]
|
||||
top_k: Option<usize>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// The model size to use.
|
||||
#[arg(long, default_value = "1b")]
|
||||
which: Which,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weights: Option<String>,
|
||||
|
||||
/// The mimi model weight file, in safetensor format.
|
||||
#[arg(long)]
|
||||
mimi_weights: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature, args.repeat_penalty, args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match args.model_id {
|
||||
Some(model_id) => model_id,
|
||||
None => {
|
||||
let name = match args.which {
|
||||
Which::Csm1b => "sesame/csm-1b",
|
||||
};
|
||||
name.to_string()
|
||||
}
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let filenames = match args.weights {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => vec![repo.get("model.safetensors")?],
|
||||
};
|
||||
let tokenizer_filename = match args.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => api
|
||||
.model("meta-llama/Llama-3.2-1B".to_string())
|
||||
.get("tokenizer.json")?,
|
||||
};
|
||||
let mimi_filename = match args.mimi_weights {
|
||||
Some(model) => std::path::PathBuf::from(model),
|
||||
None => Api::new()?
|
||||
.model("kyutai/mimi".to_string())
|
||||
.get("model.safetensors")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let config: Config = match args.config {
|
||||
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
|
||||
None => {
|
||||
let config_file = repo.get("config.json")?;
|
||||
serde_json::from_slice(&std::fs::read(config_file)?)?
|
||||
}
|
||||
};
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let (mut model, device) = {
|
||||
let dtype = device.bf16_default_to_f32();
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
(model, device)
|
||||
};
|
||||
let mut mimi_model = {
|
||||
use candle_transformers::models::mimi;
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[mimi_filename], DType::F32, &device)? };
|
||||
let config = mimi::Config::v0_1(Some(32));
|
||||
mimi::Model::new(config, vb)?
|
||||
};
|
||||
let cb = config.audio_num_codebooks;
|
||||
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let voices = candle::safetensors::load(args.voices, &device)?;
|
||||
let mut lp = candle_transformers::generation::LogitsProcessor::new(
|
||||
args.seed,
|
||||
Some(args.temperature),
|
||||
None,
|
||||
);
|
||||
let tokens = voices
|
||||
.get("tokens")
|
||||
.expect("no tokens in prompt")
|
||||
.to_dtype(DType::U32)?;
|
||||
let mask = voices.get("mask").expect("no mask in prompt").clone();
|
||||
|
||||
let mut pos = 0;
|
||||
let _frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
||||
pos += tokens.dim(1)?;
|
||||
|
||||
let mut all_pcms = vec![];
|
||||
for (turn_idx, prompt) in args.prompt.split('|').enumerate() {
|
||||
println!("{prompt:?}");
|
||||
let speaker_idx = turn_idx % 2;
|
||||
let prompt = format!("[{speaker_idx}]{}<|end_of_text|>", prompt);
|
||||
let prompt = tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
|
||||
let (mut tokens, mut mask) = model.text_tokens_and_mask(prompt.get_ids())?;
|
||||
|
||||
let mut generated_tokens = vec![];
|
||||
loop {
|
||||
let frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
||||
pos += tokens.dim(1)?;
|
||||
let is_done = frame.iter().all(|&x| x == 0);
|
||||
(tokens, mask) = model.audio_tokens_and_mask(frame)?;
|
||||
print!("\rframe {pos}");
|
||||
if is_done {
|
||||
let _frame = model.generate_frame(&tokens, &mask, pos, &mut lp)?;
|
||||
pos += tokens.dim(1)?;
|
||||
break;
|
||||
}
|
||||
generated_tokens.push(tokens.clone());
|
||||
}
|
||||
println!();
|
||||
let generated_tokens = Tensor::cat(&generated_tokens, 1)?.narrow(2, 0, cb)?.t()?;
|
||||
let pcm = mimi_model.decode(&generated_tokens)?;
|
||||
let pcm = pcm.i(0)?.i(0)?.to_dtype(DType::F32)?;
|
||||
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
|
||||
all_pcms.push(pcm);
|
||||
}
|
||||
let pcm = Tensor::cat(&all_pcms, 0)?;
|
||||
let pcm = pcm.to_vec1::<f32>()?;
|
||||
println!("writing output file {}", args.out_file);
|
||||
let mut output = std::fs::File::create(args.out_file)?;
|
||||
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
|
||||
|
||||
Ok(())
|
||||
}
|
533
candle-transformers/src/models/csm.rs
Normal file
533
candle-transformers/src/models/csm.rs
Normal file
@ -0,0 +1,533 @@
|
||||
//! Implementation of the Conversational Speech Model (CSM) from Sesame
|
||||
//!
|
||||
//! See: [CSM](Conversational Speech Model)
|
||||
//!
|
||||
/// CSM (Conversational Speech Model) is a speech generation model from Sesame that generates RVQ
|
||||
/// audio codes from text and audio inputs. The model architecture employs a Llama backbone and a
|
||||
/// smaller audio decoder that produces Mimi audio codes.
|
||||
///
|
||||
use crate::generation::LogitsProcessor;
|
||||
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
|
||||
use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder};
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(serde::Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum Flavor {
|
||||
#[serde(rename = "llama-1B")]
|
||||
Llama1B,
|
||||
#[serde(rename = "llama-100M")]
|
||||
Llama100M,
|
||||
}
|
||||
|
||||
#[derive(serde::Deserialize, Debug, Clone)]
|
||||
pub struct Config {
|
||||
pub audio_num_codebooks: usize,
|
||||
pub audio_vocab_size: usize,
|
||||
pub backbone_flavor: Flavor,
|
||||
pub decoder_flavor: Flavor,
|
||||
pub text_vocab_size: usize,
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct LlamaConfig {
|
||||
vocab_size: usize,
|
||||
num_layers: usize,
|
||||
num_heads: usize,
|
||||
num_kv_heads: usize,
|
||||
embed_dim: usize,
|
||||
max_seq_len: usize,
|
||||
intermediate_dim: usize,
|
||||
norm_eps: f64,
|
||||
rope_base: f32,
|
||||
scale_factor: usize,
|
||||
}
|
||||
|
||||
impl LlamaConfig {
|
||||
pub fn from_flavor(flavor: Flavor) -> Self {
|
||||
match flavor {
|
||||
Flavor::Llama1B => Self {
|
||||
vocab_size: 128256,
|
||||
num_layers: 16,
|
||||
num_heads: 32,
|
||||
num_kv_heads: 8,
|
||||
embed_dim: 2048,
|
||||
max_seq_len: 2048,
|
||||
intermediate_dim: 8192,
|
||||
norm_eps: 1e-5,
|
||||
rope_base: 500_000.,
|
||||
scale_factor: 32,
|
||||
},
|
||||
Flavor::Llama100M => Self {
|
||||
vocab_size: 128256,
|
||||
num_layers: 4,
|
||||
num_heads: 8,
|
||||
num_kv_heads: 2,
|
||||
embed_dim: 1024,
|
||||
max_seq_len: 2048,
|
||||
intermediate_dim: 8192,
|
||||
norm_eps: 1e-5,
|
||||
rope_base: 500_000.,
|
||||
scale_factor: 32,
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct RotaryEmbedding {
|
||||
sin: Tensor,
|
||||
cos: Tensor,
|
||||
}
|
||||
|
||||
fn calculate_default_inv_freq(cfg: &LlamaConfig) -> Vec<f32> {
|
||||
let head_dim = cfg.embed_dim / cfg.num_heads;
|
||||
(0..head_dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_base.powf(i as f32 / head_dim as f32))
|
||||
.collect()
|
||||
}
|
||||
|
||||
impl RotaryEmbedding {
|
||||
fn new(dtype: DType, cfg: &LlamaConfig, dev: &Device) -> Result<Self> {
|
||||
let low_freq_factor = 1.0;
|
||||
let high_freq_factor = 4.0;
|
||||
let original_max_position_embeddings = 8192;
|
||||
let scale_factor = cfg.scale_factor as f32;
|
||||
let theta = {
|
||||
let low_freq_wavelen = original_max_position_embeddings as f32 / low_freq_factor;
|
||||
let high_freq_wavelen = original_max_position_embeddings as f32 / high_freq_factor;
|
||||
|
||||
calculate_default_inv_freq(cfg)
|
||||
.into_iter()
|
||||
.map(|freq| {
|
||||
let wavelen = 2. * std::f32::consts::PI / freq;
|
||||
if wavelen < high_freq_wavelen {
|
||||
freq
|
||||
} else if wavelen > low_freq_wavelen {
|
||||
freq / scale_factor
|
||||
} else {
|
||||
let smooth = (original_max_position_embeddings as f32 / wavelen
|
||||
- low_freq_factor)
|
||||
/ (high_freq_factor - low_freq_factor);
|
||||
(1. - smooth) * freq / scale_factor + smooth * freq
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
};
|
||||
|
||||
let theta = Tensor::new(theta, dev)?;
|
||||
let idx_theta = Tensor::arange(0, cfg.max_seq_len as u32, dev)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((cfg.max_seq_len, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let cos = idx_theta.cos()?.to_dtype(dtype)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(dtype)?;
|
||||
Ok(Self { cos, sin })
|
||||
}
|
||||
|
||||
fn apply_rotary_emb_qkv(
|
||||
&self,
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||
let q_embed = candle_nn::rotary_emb::rope_i(q, &cos, &sin)?;
|
||||
let k_embed = candle_nn::rotary_emb::rope_i(k, &cos, &sin)?;
|
||||
Ok((q_embed, k_embed))
|
||||
}
|
||||
}
|
||||
fn rms_norm(hidden_size: usize, eps: f64, vb: VarBuilder) -> Result<RmsNorm> {
|
||||
let weight = vb.get((hidden_size,), "scale")?;
|
||||
Ok(RmsNorm::new(weight, eps))
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Attention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
rotary_emb: Arc<RotaryEmbedding>,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
num_heads: usize,
|
||||
head_dim: usize,
|
||||
num_kv_heads: usize,
|
||||
num_kv_groups: usize,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
fn new(cfg: &LlamaConfig, rotary_emb: Arc<RotaryEmbedding>, vb: VarBuilder) -> Result<Self> {
|
||||
let head_dim = cfg.embed_dim / cfg.num_heads;
|
||||
let kv_dim = cfg.num_kv_heads * head_dim;
|
||||
|
||||
let q_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("q_proj"))?;
|
||||
let k_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("k_proj"))?;
|
||||
let v_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("v_proj"))?;
|
||||
let o_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("output_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
rotary_emb,
|
||||
kv_cache: None,
|
||||
num_heads: cfg.num_heads,
|
||||
num_kv_heads: cfg.num_kv_heads,
|
||||
num_kv_groups: cfg.num_heads / cfg.num_kv_heads,
|
||||
head_dim,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (b_sz, q_len, _) = xs.dims3()?;
|
||||
|
||||
let query_states = self.q_proj.forward(xs)?;
|
||||
let key_states = self.k_proj.forward(xs)?;
|
||||
let value_states = self.v_proj.forward(xs)?;
|
||||
|
||||
let query_states = query_states
|
||||
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let key_states = key_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let value_states = value_states
|
||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
|
||||
let (query_states, key_states) =
|
||||
self.rotary_emb
|
||||
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
||||
|
||||
let (key_states, value_states) = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((prev_k, prev_v)) => {
|
||||
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||
|
||||
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?;
|
||||
let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?;
|
||||
|
||||
let attn_output = {
|
||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||
|
||||
let attn_weights = match attention_mask {
|
||||
None => attn_weights,
|
||||
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||
};
|
||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||
attn_weights.matmul(&value_states)?
|
||||
};
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape((b_sz, q_len, self.num_heads * self.head_dim))?
|
||||
.apply(&self.o_proj)
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
w1: Linear,
|
||||
w2: Linear,
|
||||
w3: Linear,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(cfg: &LlamaConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let w1 = linear_b(cfg.embed_dim, cfg.intermediate_dim, false, vb.pp("w1"))?;
|
||||
let w2 = linear_b(cfg.intermediate_dim, cfg.embed_dim, false, vb.pp("w2"))?;
|
||||
let w3 = linear_b(cfg.embed_dim, cfg.intermediate_dim, false, vb.pp("w3"))?;
|
||||
Ok(Self { w1, w2, w3 })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Mlp {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let lhs = xs.apply(&self.w1)?.silu()?;
|
||||
let rhs = xs.apply(&self.w3)?;
|
||||
(lhs * rhs)?.apply(&self.w2)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Layer {
|
||||
mlp_norm: RmsNorm,
|
||||
sa_norm: RmsNorm,
|
||||
attn: Attention,
|
||||
mlp: Mlp,
|
||||
}
|
||||
|
||||
impl Layer {
|
||||
fn new(cfg: &LlamaConfig, rotary_emb: Arc<RotaryEmbedding>, vb: VarBuilder) -> Result<Self> {
|
||||
let mlp_norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("mlp_norm"))?;
|
||||
let sa_norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("sa_norm"))?;
|
||||
let attn = Attention::new(cfg, rotary_emb, vb.pp("attn"))?;
|
||||
let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
|
||||
Ok(Self {
|
||||
mlp_norm,
|
||||
sa_norm,
|
||||
attn,
|
||||
mlp,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attention_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = self.sa_norm.forward(xs)?;
|
||||
let xs = self.attn.forward(&xs, attention_mask, seqlen_offset)?;
|
||||
let xs = (xs + residual)?;
|
||||
let residual = &xs;
|
||||
let xs = xs.apply(&self.mlp_norm)?.apply(&self.mlp)?;
|
||||
residual + xs
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self) {
|
||||
self.attn.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct LlamaModel {
|
||||
layers: Vec<Layer>,
|
||||
norm: RmsNorm,
|
||||
device: Device,
|
||||
dtype: DType,
|
||||
}
|
||||
|
||||
impl LlamaModel {
|
||||
pub fn new(cfg: &LlamaConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb.device())?);
|
||||
let mut layers = Vec::with_capacity(cfg.num_layers);
|
||||
let vb_l = vb.pp("layers");
|
||||
for layer_idx in 0..cfg.num_layers {
|
||||
let layer = Layer::new(cfg, rotary_emb.clone(), vb_l.pp(layer_idx))?;
|
||||
layers.push(layer);
|
||||
}
|
||||
let norm = rms_norm(cfg.embed_dim, cfg.norm_eps, vb.pp("norm"))?;
|
||||
Ok(Self {
|
||||
layers,
|
||||
norm,
|
||||
device: vb.device().clone(),
|
||||
dtype: vb.dtype(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
}
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
tgt_len: usize,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..tgt_len)
|
||||
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||
let mask = if seqlen_offset > 0 {
|
||||
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||
} else {
|
||||
mask
|
||||
};
|
||||
mask.expand((1, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||
.to_dtype(self.dtype)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||
let (_b_size, seq_len, _embed_dim) = xs.dims3()?;
|
||||
let attention_mask = if seq_len <= 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = self.prepare_decoder_attention_mask(seq_len, seqlen_offset)?;
|
||||
Some(mask)
|
||||
};
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?;
|
||||
}
|
||||
let ys = xs.narrow(1, seq_len - 1, 1)?.apply(&self.norm)?;
|
||||
Ok(ys)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Model {
|
||||
backbone: LlamaModel,
|
||||
decoder: LlamaModel,
|
||||
codebook0_head: Linear,
|
||||
audio_embeddings: Embedding,
|
||||
text_embeddings: Embedding,
|
||||
projection: Linear,
|
||||
audio_head: Tensor,
|
||||
config: Config,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let backbone_cfg = LlamaConfig::from_flavor(cfg.backbone_flavor);
|
||||
let backbone = LlamaModel::new(&backbone_cfg, vb.pp("backbone"))?;
|
||||
let decoder_cfg = LlamaConfig::from_flavor(cfg.decoder_flavor);
|
||||
let decoder = LlamaModel::new(&decoder_cfg, vb.pp("decoder"))?;
|
||||
let backbone_dim = backbone_cfg.embed_dim;
|
||||
let decoder_dim = decoder_cfg.embed_dim;
|
||||
let audio_embeddings = embedding(
|
||||
cfg.audio_vocab_size * cfg.audio_num_codebooks,
|
||||
backbone_dim,
|
||||
vb.pp("audio_embeddings"),
|
||||
)?;
|
||||
let text_embeddings =
|
||||
embedding(cfg.text_vocab_size, backbone_dim, vb.pp("text_embeddings"))?;
|
||||
let projection = linear_b(backbone_dim, decoder_dim, false, vb.pp("projection"))?;
|
||||
let codebook0_head = linear_b(
|
||||
backbone_dim,
|
||||
cfg.audio_vocab_size,
|
||||
false,
|
||||
vb.pp("codebook0_head"),
|
||||
)?;
|
||||
let audio_head = vb.get(
|
||||
(
|
||||
cfg.audio_num_codebooks - 1,
|
||||
decoder_dim,
|
||||
cfg.audio_vocab_size,
|
||||
),
|
||||
"audio_head",
|
||||
)?;
|
||||
Ok(Self {
|
||||
backbone,
|
||||
decoder,
|
||||
codebook0_head,
|
||||
audio_embeddings,
|
||||
text_embeddings,
|
||||
projection,
|
||||
audio_head,
|
||||
config: cfg.clone(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.backbone.clear_kv_cache();
|
||||
self.decoder.clear_kv_cache();
|
||||
}
|
||||
|
||||
pub fn generate_frame(
|
||||
&mut self,
|
||||
tokens: &Tensor,
|
||||
tokens_mask: &Tensor,
|
||||
input_pos: usize,
|
||||
lp: &mut LogitsProcessor,
|
||||
) -> Result<Vec<u32>> {
|
||||
let (b_sz, seq_len, _cb_plus_one) = tokens.dims3()?;
|
||||
let audio_tokens = tokens.narrow(2, 0, self.config.audio_num_codebooks)?;
|
||||
let text_tokens = tokens.narrow(2, self.config.audio_num_codebooks, 1)?;
|
||||
let text_embeds = self.text_embeddings.forward(&text_tokens)?;
|
||||
let arange = (Tensor::arange(
|
||||
0u32,
|
||||
self.config.audio_num_codebooks as u32,
|
||||
&self.decoder.device,
|
||||
)? * self.config.audio_vocab_size as f64)?;
|
||||
let audio_tokens = audio_tokens.broadcast_add(&arange.reshape((1, 1, ()))?)?;
|
||||
let audio_embeds = self.audio_embeddings.forward(&audio_tokens)?.reshape((
|
||||
b_sz,
|
||||
seq_len,
|
||||
self.config.audio_num_codebooks,
|
||||
(),
|
||||
))?;
|
||||
let embeds = Tensor::cat(&[&audio_embeds, &text_embeds], D::Minus2)?;
|
||||
let embeds = embeds.broadcast_mul(
|
||||
&tokens_mask
|
||||
.to_dtype(self.backbone.dtype)?
|
||||
.unsqueeze(D::Minus1)?,
|
||||
)?;
|
||||
let embeds = embeds.sum(2)?;
|
||||
let h = self.backbone.forward(&embeds, input_pos)?;
|
||||
let c0_logits = h.apply(&self.codebook0_head)?;
|
||||
let c0_sample = lp.sample(&c0_logits.i((0, 0))?)?;
|
||||
let mut all_samples = vec![c0_sample];
|
||||
let c0_sample = Tensor::from_slice(&[c0_sample], (1, 1), &self.decoder.device)?;
|
||||
let c0_embed = self.audio_embeddings.forward(&c0_sample)?;
|
||||
let mut curr_h = Tensor::cat(&[h, c0_embed], 1)?;
|
||||
|
||||
self.decoder.clear_kv_cache();
|
||||
let mut decoder_pos = 0;
|
||||
for i in 1..self.config.audio_num_codebooks {
|
||||
let proj_h = curr_h.apply(&self.projection)?;
|
||||
let decoder_h = self.decoder.forward(&proj_h, decoder_pos)?;
|
||||
decoder_pos += curr_h.dim(1)?;
|
||||
let ci_logits = decoder_h.broadcast_matmul(&self.audio_head.get(i - 1)?)?;
|
||||
let ci_sample = lp.sample(&ci_logits.i((0, 0))?)?;
|
||||
all_samples.push(ci_sample);
|
||||
let ci_sample = Tensor::from_slice(
|
||||
&[ci_sample + (i * self.config.audio_vocab_size) as u32],
|
||||
(1, 1),
|
||||
&self.decoder.device,
|
||||
)?;
|
||||
let ci_embed = self.audio_embeddings.forward(&ci_sample)?;
|
||||
curr_h = ci_embed
|
||||
}
|
||||
Ok(all_samples)
|
||||
}
|
||||
|
||||
pub fn audio_tokens_and_mask(&self, mut frame: Vec<u32>) -> Result<(Tensor, Tensor)> {
|
||||
let cb = self.config.audio_num_codebooks;
|
||||
let device = &self.backbone.device;
|
||||
let mut mask = vec![1u8; cb];
|
||||
mask.push(0);
|
||||
let mask = Tensor::from_vec(mask, (1, 1, cb + 1), device)?;
|
||||
|
||||
frame.push(0);
|
||||
let tokens = Tensor::from_vec(frame, (1, 1, cb + 1), device)?;
|
||||
Ok((tokens, mask))
|
||||
}
|
||||
|
||||
pub fn text_tokens_and_mask(&self, ids: &[u32]) -> Result<(Tensor, Tensor)> {
|
||||
let cb = self.config.audio_num_codebooks;
|
||||
let device = &self.backbone.device;
|
||||
let mut tokens = vec![];
|
||||
let mut mask = vec![];
|
||||
for &v in ids.iter() {
|
||||
let mut token = vec![0; cb];
|
||||
token.push(v);
|
||||
let token = Tensor::from_vec(token, (1, 1, cb + 1), device)?;
|
||||
tokens.push(token);
|
||||
let mut m = vec![0u8; cb];
|
||||
m.push(1);
|
||||
let m = Tensor::from_vec(m, (1, 1, cb + 1), device)?;
|
||||
mask.push(m);
|
||||
}
|
||||
let tokens = Tensor::cat(&tokens, 1)?;
|
||||
let mask = Tensor::cat(&mask, 1)?;
|
||||
Ok((tokens, mask))
|
||||
}
|
||||
}
|
@ -27,6 +27,7 @@ pub mod codegeex4_9b;
|
||||
pub mod colpali;
|
||||
pub mod convmixer;
|
||||
pub mod convnext;
|
||||
pub mod csm;
|
||||
pub mod dac;
|
||||
pub mod debertav2;
|
||||
pub mod deepseek2;
|
||||
|
Reference in New Issue
Block a user