mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Add a RotatingKVCache. (#2493)
* Add a RotatingKVCache. * Add some KvCache tests. * Test the reset too. * More kv-cache testing. * More tests for the rotating kv-cache. * Improve the api for the rotating cache so that the whole src tensor gets returned when it's overlarge. * Handle contiguity + bugfix + use in mimi. * Add a way to test the mimi streaming mode. * Mimi streaming fixes. * More rotating kv-cache. * Fix the attn mask generation. * Handle the abs case. * Add some tests for the generated mask.
This commit is contained in:
@ -39,6 +39,11 @@ struct Args {
|
||||
/// The model weight file, in safetensor format.
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
/// Whether to use streaming or not, when streaming slices of data of the given size are passed
|
||||
/// to the encoder/decoder one at a time.
|
||||
#[arg(long)]
|
||||
streaming: Option<usize>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -87,20 +92,49 @@ fn main() -> Result<()> {
|
||||
pcm
|
||||
}
|
||||
};
|
||||
let pcm_len = pcm.len();
|
||||
let pcm = Tensor::from_vec(pcm, (1, 1, pcm_len), &device)?;
|
||||
println!("input pcm shape: {:?}", pcm.shape());
|
||||
model.encode(&pcm)?
|
||||
match args.streaming {
|
||||
Some(chunk_size) => {
|
||||
let mut code_chunks = vec![];
|
||||
for pcm in pcm.chunks(chunk_size) {
|
||||
let pcm = Tensor::new(pcm, &device)?.reshape((1, 1, ()))?;
|
||||
let code_chunk = model.encode(&pcm)?;
|
||||
code_chunks.push(code_chunk)
|
||||
}
|
||||
Tensor::cat(&code_chunks, candle::D::Minus1)?
|
||||
}
|
||||
None => {
|
||||
let pcm_len = pcm.len();
|
||||
let pcm = Tensor::from_vec(pcm, (1, 1, pcm_len), &device)?;
|
||||
println!("input pcm shape: {:?}", pcm.shape());
|
||||
model.encode(&pcm)?
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("codes shape: {:?}", codes.shape());
|
||||
model.reset_state();
|
||||
|
||||
match args.action {
|
||||
Action::AudioToCode => {
|
||||
codes.save_safetensors("codes", &args.out_file)?;
|
||||
}
|
||||
Action::AudioToAudio | Action::CodeToAudio => {
|
||||
let pcm = model.decode(&codes)?;
|
||||
let pcm = match args.streaming {
|
||||
Some(chunk_size) => {
|
||||
let seq_len = codes.dim(candle::D::Minus1)?;
|
||||
let mut pcm_chunks = vec![];
|
||||
for chunk_start in (0..seq_len).step_by(chunk_size) {
|
||||
let chunk_len = usize::min(chunk_size, seq_len - chunk_start);
|
||||
let codes = codes.narrow(candle::D::Minus1, chunk_start, chunk_len)?;
|
||||
let pcm = model.decode_step(&codes.into())?;
|
||||
if let Some(pcm) = pcm.as_option() {
|
||||
pcm_chunks.push(pcm.clone())
|
||||
}
|
||||
}
|
||||
Tensor::cat(&pcm_chunks, candle::D::Minus1)?
|
||||
}
|
||||
None => model.decode(&codes)?,
|
||||
};
|
||||
println!("output pcm shape: {:?}", pcm.shape());
|
||||
let pcm = pcm.i(0)?.i(0)?;
|
||||
let pcm = candle_examples::audio::normalize_loudness(&pcm, 24_000, true)?;
|
||||
|
@ -1,4 +1,4 @@
|
||||
use candle::{Result, Tensor};
|
||||
use candle::{Device, Result, Tensor};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Cache {
|
||||
@ -145,3 +145,225 @@ impl KvCache {
|
||||
self.v.reset();
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RotatingCache {
|
||||
all_data: Option<Tensor>,
|
||||
dim: usize,
|
||||
// `offset` is the current write index in the buffer
|
||||
offset: usize,
|
||||
// The total size of the sequence seen so far.
|
||||
current_seq_len: usize,
|
||||
// max_seq_len is the size of the rotating buffer, it is actually allowed for the full
|
||||
// sequence to grow past this limit.
|
||||
max_seq_len: usize,
|
||||
}
|
||||
|
||||
impl RotatingCache {
|
||||
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
||||
Self {
|
||||
all_data: None,
|
||||
dim,
|
||||
offset: 0,
|
||||
current_seq_len: 0,
|
||||
max_seq_len,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn offset(&self) -> usize {
|
||||
self.offset
|
||||
}
|
||||
|
||||
pub fn dim(&self) -> usize {
|
||||
self.dim
|
||||
}
|
||||
|
||||
pub fn current_seq_len(&self) -> usize {
|
||||
self.current_seq_len
|
||||
}
|
||||
|
||||
pub fn max_seq_len(&self) -> usize {
|
||||
self.max_seq_len
|
||||
}
|
||||
|
||||
pub fn all_data(&self) -> &Option<Tensor> {
|
||||
&self.all_data
|
||||
}
|
||||
|
||||
pub fn current_data(&self) -> Result<Option<Tensor>> {
|
||||
let data = match self.all_data.as_ref() {
|
||||
None => None,
|
||||
Some(d) => {
|
||||
if self.current_seq_len >= self.max_seq_len {
|
||||
Some(d.clone())
|
||||
} else {
|
||||
Some(d.narrow(self.dim, 0, self.current_seq_len)?)
|
||||
}
|
||||
}
|
||||
};
|
||||
Ok(data)
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.offset = 0;
|
||||
self.current_seq_len = 0;
|
||||
self.all_data = None;
|
||||
}
|
||||
|
||||
pub fn append(&mut self, src: &Tensor) -> Result<Tensor> {
|
||||
let seq_len = src.dim(self.dim)?;
|
||||
// This doesn't seem very idiomatic but because the creation can fail, it's tricky to use
|
||||
// self.all_data.get_or_insert_with.
|
||||
if self.all_data.is_none() {
|
||||
let mut shape = src.dims().to_vec();
|
||||
shape[self.dim] = self.max_seq_len;
|
||||
let ad = Tensor::zeros(shape, src.dtype(), src.device())?;
|
||||
self.all_data = Some(ad)
|
||||
};
|
||||
let ad = self.all_data.as_mut().unwrap();
|
||||
|
||||
self.current_seq_len += seq_len;
|
||||
if seq_len >= self.max_seq_len {
|
||||
let to_copy = src
|
||||
.narrow(self.dim, seq_len - self.max_seq_len, self.max_seq_len)?
|
||||
.contiguous()?;
|
||||
ad.slice_set(&to_copy, self.dim, 0)?;
|
||||
self.offset = 0;
|
||||
// Here we return `src` rather than `ad` so that all the past can be used.
|
||||
Ok(src.clone())
|
||||
} else {
|
||||
let rem_len = self.max_seq_len - self.offset;
|
||||
if seq_len <= rem_len {
|
||||
ad.slice_set(&src.contiguous()?, self.dim, self.offset)?;
|
||||
self.offset = (self.offset + seq_len) % self.max_seq_len;
|
||||
} else {
|
||||
// We have to make two copies here as we go over the boundary of the cache.
|
||||
if rem_len > 0 {
|
||||
let src1 = src.narrow(self.dim, 0, rem_len)?.contiguous()?;
|
||||
ad.slice_set(&src1, self.dim, self.offset)?;
|
||||
}
|
||||
let src2 = src
|
||||
.narrow(self.dim, rem_len, seq_len - rem_len)?
|
||||
.contiguous()?;
|
||||
ad.slice_set(&src2, self.dim, 0)?;
|
||||
self.offset = seq_len - rem_len;
|
||||
}
|
||||
if self.current_seq_len >= self.max_seq_len {
|
||||
Ok(ad.clone())
|
||||
} else {
|
||||
Ok(ad.narrow(self.dim, 0, self.current_seq_len)?)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn get_mask_abs(&self, size1: usize, size2: usize, device: &Device) -> Result<Tensor> {
|
||||
let context = self.max_seq_len;
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|i| {
|
||||
(0..size2).map(move |j| {
|
||||
u8::from(size1 + j > size2 + i || size1 + j + context < size2 + i)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
fn get_mask_rel(&self, size1: usize, size2: usize, device: &Device) -> Result<Tensor> {
|
||||
let context = self.max_seq_len;
|
||||
let upd_offset = (self.offset + size1) % self.max_seq_len;
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|pos_src| {
|
||||
// The absolute position of the elements that will get added to the cache.
|
||||
let pos_src = self.current_seq_len + pos_src;
|
||||
(0..size2).map(move |pos_cache_rel| {
|
||||
// The absolute position of the cache elements after the addition.
|
||||
let pos_cache = self.current_seq_len + size1 + pos_cache_rel - upd_offset;
|
||||
let pos_cache = if pos_cache_rel < upd_offset {
|
||||
pos_cache
|
||||
} else {
|
||||
pos_cache - self.max_seq_len
|
||||
};
|
||||
u8::from(pos_cache > pos_src || pos_cache + context < pos_src)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
/// Returns the attn_mask to be applied *after* adding `seq_len` to the cache.
|
||||
pub fn attn_mask(&self, seq_len: usize, device: &Device) -> Result<Option<Tensor>> {
|
||||
let mask = if seq_len == 1 {
|
||||
None
|
||||
} else {
|
||||
let mask = if seq_len < self.max_seq_len {
|
||||
let cache_out_len = (self.current_seq_len + seq_len).min(self.max_seq_len);
|
||||
self.get_mask_rel(seq_len, cache_out_len, device)?
|
||||
} else {
|
||||
self.get_mask_abs(seq_len, seq_len, device)?
|
||||
};
|
||||
Some(mask)
|
||||
};
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RotatingKvCache {
|
||||
k: RotatingCache,
|
||||
v: RotatingCache,
|
||||
}
|
||||
|
||||
impl RotatingKvCache {
|
||||
pub fn new(dim: usize, max_seq_len: usize) -> Self {
|
||||
let k = RotatingCache::new(dim, max_seq_len);
|
||||
let v = RotatingCache::new(dim, max_seq_len);
|
||||
Self { k, v }
|
||||
}
|
||||
|
||||
pub fn k_cache(&self) -> &RotatingCache {
|
||||
&self.k
|
||||
}
|
||||
|
||||
pub fn v_cache(&self) -> &RotatingCache {
|
||||
&self.v
|
||||
}
|
||||
|
||||
pub fn k_cache_mut(&mut self) -> &mut RotatingCache {
|
||||
&mut self.k
|
||||
}
|
||||
|
||||
pub fn v_cache_mut(&mut self) -> &mut RotatingCache {
|
||||
&mut self.v
|
||||
}
|
||||
|
||||
pub fn k(&self) -> Result<Option<Tensor>> {
|
||||
self.k.current_data()
|
||||
}
|
||||
|
||||
pub fn v(&self) -> Result<Option<Tensor>> {
|
||||
self.v.current_data()
|
||||
}
|
||||
|
||||
pub fn append(&mut self, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||
let out_k = self.k.append(k)?;
|
||||
let out_v = self.v.append(v)?;
|
||||
Ok((out_k, out_v))
|
||||
}
|
||||
|
||||
pub fn offset(&self) -> usize {
|
||||
self.k.offset()
|
||||
}
|
||||
|
||||
pub fn current_seq_len(&self) -> usize {
|
||||
self.k.current_seq_len()
|
||||
}
|
||||
|
||||
pub fn attn_mask(&self, seq_len: usize, device: &Device) -> Result<Option<Tensor>> {
|
||||
self.k.attn_mask(seq_len, device)
|
||||
}
|
||||
|
||||
pub fn reset(&mut self) {
|
||||
self.k.reset();
|
||||
self.v.reset();
|
||||
}
|
||||
}
|
||||
|
110
candle-nn/tests/kv_cache.rs
Normal file
110
candle-nn/tests/kv_cache.rs
Normal file
@ -0,0 +1,110 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use candle::{Device, Result, Tensor};
|
||||
|
||||
#[test]
|
||||
fn kv_cache() -> Result<()> {
|
||||
let mut cache = candle_nn::kv_cache::Cache::new(0, 16);
|
||||
for _ in [0, 1] {
|
||||
assert_eq!(cache.current_seq_len(), 0);
|
||||
let data = cache.current_data()?;
|
||||
assert!(data.is_none());
|
||||
let t = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
|
||||
cache.append(&t)?;
|
||||
let data = cache.current_data()?.unwrap();
|
||||
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3.]);
|
||||
let t = Tensor::new(&[4f32], &Device::Cpu)?;
|
||||
cache.append(&t)?;
|
||||
let data = cache.current_data()?.unwrap();
|
||||
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4.]);
|
||||
let t = Tensor::new(&[0f32, 5., 6., 7.], &Device::Cpu)?;
|
||||
cache.append(&t)?;
|
||||
let data = cache.current_data()?.unwrap();
|
||||
assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4., 0., 5., 6., 7.]);
|
||||
assert_eq!(cache.current_seq_len(), 8);
|
||||
cache.reset();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rotating_kv_cache() -> Result<()> {
|
||||
let mut cache = candle_nn::kv_cache::RotatingCache::new(0, 6);
|
||||
for _ in [0, 1] {
|
||||
assert_eq!(cache.offset(), 0);
|
||||
assert_eq!(cache.current_seq_len(), 0);
|
||||
let data = cache.current_data()?;
|
||||
assert!(data.is_none());
|
||||
let t = Tensor::new(&[1., 2., 3.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3.]);
|
||||
let t = Tensor::new(&[4.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3., 4.]);
|
||||
let t = Tensor::new(&[0., 5., 6., 7.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 3., 4., 0., 5.]);
|
||||
assert_eq!(cache.current_seq_len(), 8);
|
||||
assert_eq!(cache.offset(), 2);
|
||||
|
||||
let t = Tensor::new(&[8.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 4., 0., 5.]);
|
||||
assert_eq!(cache.current_seq_len(), 9);
|
||||
assert_eq!(cache.offset(), 3);
|
||||
|
||||
let t = Tensor::new(&[9., 10., 11.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 9., 10., 11.]);
|
||||
assert_eq!(cache.current_seq_len(), 12);
|
||||
assert_eq!(cache.offset(), 0);
|
||||
|
||||
let t = Tensor::new(&[12.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [12., 7., 8., 9., 10., 11.]);
|
||||
assert_eq!(cache.current_seq_len(), 13);
|
||||
assert_eq!(cache.offset(), 1);
|
||||
|
||||
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]],
|
||||
);
|
||||
let t = Tensor::new(&[0., 1., 2., 3., 4., 5., 6., 7., 8.], &Device::Cpu)?;
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [0., 1., 2., 3., 4., 5., 6., 7., 8.]);
|
||||
assert_eq!(cache.current_seq_len(), 22);
|
||||
assert_eq!(cache.offset(), 0);
|
||||
|
||||
let mask = cache.attn_mask(1, &Device::Cpu)?;
|
||||
assert!(mask.is_none());
|
||||
let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
|
||||
assert_eq!(
|
||||
mask.to_vec2::<u8>()?,
|
||||
&[[0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
|
||||
);
|
||||
let t = Tensor::new(&[42.], &Device::Cpu)?;
|
||||
|
||||
let data = cache.append(&t)?;
|
||||
assert_eq!(data.to_vec1::<f64>()?, [42., 4., 5., 6., 7., 8.]);
|
||||
assert_eq!(cache.current_seq_len(), 23);
|
||||
assert_eq!(cache.offset(), 1);
|
||||
|
||||
cache.reset();
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -101,21 +101,6 @@ impl Module for LayerScale {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn get_mask(
|
||||
size1: usize,
|
||||
size2: usize,
|
||||
context: usize,
|
||||
device: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..size1)
|
||||
.flat_map(|i| {
|
||||
(0..size2)
|
||||
.map(move |j| u8::from(size1 + j > size2 + i || size1 + j + context < size2 + i))
|
||||
})
|
||||
.collect();
|
||||
Tensor::from_slice(&mask, (size1, size2), device)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StreamingMultiheadAttention {
|
||||
q_proj: Linear,
|
||||
@ -127,7 +112,7 @@ pub struct StreamingMultiheadAttention {
|
||||
context: usize,
|
||||
neg_inf: Tensor,
|
||||
rope: Option<Arc<RotaryEmbedding>>,
|
||||
kv_cache: candle_nn::kv_cache::KvCache,
|
||||
kv_cache: candle_nn::kv_cache::RotatingKvCache,
|
||||
pos: usize,
|
||||
use_flash_attn: bool,
|
||||
span: tracing::Span,
|
||||
@ -153,7 +138,7 @@ impl StreamingMultiheadAttention {
|
||||
num_heads: cfg.num_heads,
|
||||
context: cfg.context,
|
||||
neg_inf,
|
||||
kv_cache: candle_nn::kv_cache::KvCache::new(2, cfg.max_seq_len),
|
||||
kv_cache: candle_nn::kv_cache::RotatingKvCache::new(2, cfg.context),
|
||||
pos: 0,
|
||||
use_flash_attn: false,
|
||||
span: tracing::span!(tracing::Level::TRACE, "mha"),
|
||||
@ -236,7 +221,7 @@ impl StreamingMultiheadAttention {
|
||||
self.kv_cache.reset()
|
||||
}
|
||||
|
||||
pub fn set_kv_cache(&mut self, kv_cache: candle_nn::kv_cache::KvCache) {
|
||||
pub fn set_kv_cache(&mut self, kv_cache: candle_nn::kv_cache::RotatingKvCache) {
|
||||
self.kv_cache = kv_cache
|
||||
}
|
||||
}
|
||||
@ -582,7 +567,7 @@ impl StreamingTransformerLayer {
|
||||
self.self_attn.reset_kv_cache()
|
||||
}
|
||||
|
||||
pub fn set_kv_cache(&mut self, kv_cache: candle_nn::kv_cache::KvCache) {
|
||||
pub fn set_kv_cache(&mut self, kv_cache: candle_nn::kv_cache::RotatingKvCache) {
|
||||
self.self_attn.set_kv_cache(kv_cache)
|
||||
}
|
||||
}
|
||||
@ -590,7 +575,6 @@ impl StreamingTransformerLayer {
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct StreamingTransformer {
|
||||
layers: Vec<StreamingTransformerLayer>,
|
||||
context: usize,
|
||||
positional_embedding: PositionalEmbedding,
|
||||
max_period: usize,
|
||||
}
|
||||
@ -617,7 +601,6 @@ impl StreamingTransformer {
|
||||
}
|
||||
Ok(Self {
|
||||
layers,
|
||||
context: cfg.context,
|
||||
positional_embedding: cfg.positional_embedding,
|
||||
max_period: cfg.max_period,
|
||||
})
|
||||
@ -629,19 +612,11 @@ impl StreamingTransformer {
|
||||
|
||||
pub fn forward_ca(&mut self, xs: &Tensor, ca_src: Option<&Tensor>) -> Result<Tensor> {
|
||||
let (_b, t, c) = xs.dims3()?;
|
||||
// We will extract at most "context" from the kv_cache.
|
||||
// Note that the mask will discard the values that are before context.
|
||||
let pos = self.layers[0]
|
||||
let pos = self.layers[0].self_attn.kv_cache.current_seq_len();
|
||||
let mask = self.layers[0]
|
||||
.self_attn
|
||||
.kv_cache
|
||||
.k_cache()
|
||||
.current_seq_len()
|
||||
.min(self.context);
|
||||
let mask = if t == 1 {
|
||||
None
|
||||
} else {
|
||||
Some(get_mask(t, pos + t, self.context, xs.device())?)
|
||||
};
|
||||
.attn_mask(t, xs.device())?;
|
||||
let mut xs = match self.positional_embedding {
|
||||
PositionalEmbedding::Rope | PositionalEmbedding::None => xs.clone(),
|
||||
PositionalEmbedding::Sin => {
|
||||
|
Reference in New Issue
Block a user