Add a GRU layer. (#688)

* Add a GRU layer.

* Fix the n gate computation.
This commit is contained in:
Laurent Mazare
2023-08-31 09:43:10 +02:00
committed by GitHub
parent d210c71d77
commit db59816087
3 changed files with 187 additions and 1 deletions

View File

@ -25,7 +25,7 @@ pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
pub use linear::{linear, linear_no_bias, Linear};
pub use ops::Dropout;
pub use optim::{AdamW, ParamsAdamW, SGD};
pub use rnn::{lstm, LSTM, RNN};
pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN};
pub use var_builder::VarBuilder;
pub use var_map::VarMap;

View File

@ -184,3 +184,145 @@ impl RNN for LSTM {
Ok((output, state))
}
}
/// The state for a GRU network, this contains a single tensor.
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
pub struct GRUState {
h: Tensor,
}
impl GRUState {
/// The hidden state vector, which is also the output of the LSTM.
pub fn h(&self) -> &Tensor {
&self.h
}
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy)]
pub struct GRUConfig {
pub w_ih_init: super::Init,
pub w_hh_init: super::Init,
pub b_ih_init: Option<super::Init>,
pub b_hh_init: Option<super::Init>,
}
impl Default for GRUConfig {
fn default() -> Self {
Self {
w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
b_ih_init: Some(super::Init::Const(0.)),
b_hh_init: Some(super::Init::Const(0.)),
}
}
}
impl GRUConfig {
pub fn default_no_bias() -> Self {
Self {
w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
b_ih_init: None,
b_hh_init: None,
}
}
}
/// A Gated Recurrent Unit (GRU) layer.
///
/// <https://en.wikipedia.org/wiki/Gated_recurrent_unit>
#[allow(clippy::upper_case_acronyms, unused)]
#[derive(Debug)]
pub struct GRU {
w_ih: Tensor,
w_hh: Tensor,
b_ih: Option<Tensor>,
b_hh: Option<Tensor>,
hidden_dim: usize,
config: GRUConfig,
device: Device,
dtype: DType,
}
/// Creates a GRU layer.
pub fn gru(
in_dim: usize,
hidden_dim: usize,
config: GRUConfig,
vb: crate::VarBuilder,
) -> Result<GRU> {
let w_ih = vb.get_with_hints(
(3 * hidden_dim, in_dim),
"weight_ih_l0", // Only a single layer is supported.
config.w_ih_init,
)?;
let w_hh = vb.get_with_hints(
(3 * hidden_dim, hidden_dim),
"weight_hh_l0", // Only a single layer is supported.
config.w_hh_init,
)?;
let b_ih = match config.b_ih_init {
Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_ih_l0", init)?),
None => None,
};
let b_hh = match config.b_hh_init {
Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_hh_l0", init)?),
None => None,
};
Ok(GRU {
w_ih,
w_hh,
b_ih,
b_hh,
hidden_dim,
config,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
impl RNN for GRU {
type State = GRUState;
fn zero_state(&self, batch_dim: usize) -> Result<Self::State> {
let h = Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?;
Ok(Self::State { h })
}
fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> {
let w_ih = input.matmul(&self.w_ih.t()?)?;
let w_hh = in_state.h.matmul(&self.w_hh.t()?)?;
let w_ih = match &self.b_ih {
None => w_ih,
Some(b_ih) => w_ih.broadcast_add(b_ih)?,
};
let w_hh = match &self.b_hh {
None => w_hh,
Some(b_hh) => w_hh.broadcast_add(b_hh)?,
};
let chunks_ih = w_ih.chunk(3, 1)?;
let chunks_hh = w_hh.chunk(3, 1)?;
let r_gate = crate::ops::sigmoid(&(&chunks_ih[0] + &chunks_hh[0])?)?;
let z_gate = crate::ops::sigmoid(&(&chunks_ih[1] + &chunks_hh[1])?)?;
let n_gate = (&chunks_ih[2] + (r_gate * &chunks_hh[2])?)?.tanh();
let next_h = ((&z_gate * &in_state.h)? - ((&z_gate - 1.)? * n_gate)?)?;
Ok(GRUState { h: next_h })
}
/// The input should have dimensions [batch_size, seq_len, features].
fn seq_init(&self, input: &Tensor, in_state: &Self::State) -> Result<(Tensor, Self::State)> {
let (_b_size, seq_len, _features) = input.dims3()?;
let mut state = in_state.clone();
let mut output: Vec<Tensor> = Vec::with_capacity(seq_len);
for seq_index in 0..seq_len {
let input = input.i((.., seq_index, ..))?;
state = self.step(&input, &state)?;
output.push(state.h.clone());
}
let output = Tensor::cat(&output, 1)?;
Ok((output, state))
}
}

View File

@ -55,3 +55,47 @@ fn lstm() -> Result<()> {
assert_eq!(to_vec2_round(c, 4)?, &[[5.725, 0.4458, -0.2908]]);
Ok(())
}
/* The following test can be verified against PyTorch using the following snippet.
import torch
from torch import nn
gru = nn.GRU(2, 3, 1)
gru.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 18.).reshape(9, 2).cos())
gru.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 27.).reshape(9, 3).sin())
gru.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]))
gru.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]).cos())
state = torch.zeros((1, 3))
for inp in [3., 1., 4., 1., 5., 9., 2.]:
inp = torch.tensor([[inp, inp * 0.5]])
_out, state = gru(inp, state)
print(state)
# tensor([[ 0.0579, 0.8836, -0.9991]], grad_fn=<SqueezeBackward1>)
*/
#[test]
fn gru() -> Result<()> {
let cpu = &Device::Cpu;
let w_ih = Tensor::arange(0f32, 18f32, cpu)?.reshape((9, 2))?;
let w_ih = w_ih.cos()?;
let w_hh = Tensor::arange(0f32, 27f32, cpu)?.reshape((9, 3))?;
let w_hh = w_hh.sin()?;
let b_ih = Tensor::new(&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1.], cpu)?;
let b_hh = b_ih.cos()?;
let tensors: std::collections::HashMap<_, _> = [
("weight_ih_l0".to_string(), w_ih),
("weight_hh_l0".to_string(), w_hh),
("bias_ih_l0".to_string(), b_ih),
("bias_hh_l0".to_string(), b_hh),
]
.into_iter()
.collect();
let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu);
let gru = candle_nn::gru(2, 3, Default::default(), vb)?;
let mut state = gru.zero_state(1)?;
for inp in [3f32, 1., 4., 1., 5., 9., 2.] {
let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?;
state = gru.step(&inp, &state)?
}
let h = state.h();
assert_eq!(to_vec2_round(h, 4)?, &[[0.0579, 0.8836, -0.9991]]);
Ok(())
}