Add a GRU layer. (#688)

* Add a GRU layer.

* Fix the n gate computation.
This commit is contained in:
Laurent Mazare
2023-08-31 09:43:10 +02:00
committed by GitHub
parent d210c71d77
commit db59816087
3 changed files with 187 additions and 1 deletions

View File

@ -25,7 +25,7 @@ pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
pub use linear::{linear, linear_no_bias, Linear};
pub use ops::Dropout;
pub use optim::{AdamW, ParamsAdamW, SGD};
pub use rnn::{lstm, LSTM, RNN};
pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN};
pub use var_builder::VarBuilder;
pub use var_map::VarMap;

View File

@ -184,3 +184,145 @@ impl RNN for LSTM {
Ok((output, state))
}
}
/// The state for a GRU network, this contains a single tensor.
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
pub struct GRUState {
h: Tensor,
}
impl GRUState {
/// The hidden state vector, which is also the output of the LSTM.
pub fn h(&self) -> &Tensor {
&self.h
}
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy)]
pub struct GRUConfig {
pub w_ih_init: super::Init,
pub w_hh_init: super::Init,
pub b_ih_init: Option<super::Init>,
pub b_hh_init: Option<super::Init>,
}
impl Default for GRUConfig {
fn default() -> Self {
Self {
w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
b_ih_init: Some(super::Init::Const(0.)),
b_hh_init: Some(super::Init::Const(0.)),
}
}
}
impl GRUConfig {
pub fn default_no_bias() -> Self {
Self {
w_ih_init: super::init::DEFAULT_KAIMING_UNIFORM,
w_hh_init: super::init::DEFAULT_KAIMING_UNIFORM,
b_ih_init: None,
b_hh_init: None,
}
}
}
/// A Gated Recurrent Unit (GRU) layer.
///
/// <https://en.wikipedia.org/wiki/Gated_recurrent_unit>
#[allow(clippy::upper_case_acronyms, unused)]
#[derive(Debug)]
pub struct GRU {
w_ih: Tensor,
w_hh: Tensor,
b_ih: Option<Tensor>,
b_hh: Option<Tensor>,
hidden_dim: usize,
config: GRUConfig,
device: Device,
dtype: DType,
}
/// Creates a GRU layer.
pub fn gru(
in_dim: usize,
hidden_dim: usize,
config: GRUConfig,
vb: crate::VarBuilder,
) -> Result<GRU> {
let w_ih = vb.get_with_hints(
(3 * hidden_dim, in_dim),
"weight_ih_l0", // Only a single layer is supported.
config.w_ih_init,
)?;
let w_hh = vb.get_with_hints(
(3 * hidden_dim, hidden_dim),
"weight_hh_l0", // Only a single layer is supported.
config.w_hh_init,
)?;
let b_ih = match config.b_ih_init {
Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_ih_l0", init)?),
None => None,
};
let b_hh = match config.b_hh_init {
Some(init) => Some(vb.get_with_hints(3 * hidden_dim, "bias_hh_l0", init)?),
None => None,
};
Ok(GRU {
w_ih,
w_hh,
b_ih,
b_hh,
hidden_dim,
config,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
impl RNN for GRU {
type State = GRUState;
fn zero_state(&self, batch_dim: usize) -> Result<Self::State> {
let h = Tensor::zeros((batch_dim, self.hidden_dim), self.dtype, &self.device)?;
Ok(Self::State { h })
}
fn step(&self, input: &Tensor, in_state: &Self::State) -> Result<Self::State> {
let w_ih = input.matmul(&self.w_ih.t()?)?;
let w_hh = in_state.h.matmul(&self.w_hh.t()?)?;
let w_ih = match &self.b_ih {
None => w_ih,
Some(b_ih) => w_ih.broadcast_add(b_ih)?,
};
let w_hh = match &self.b_hh {
None => w_hh,
Some(b_hh) => w_hh.broadcast_add(b_hh)?,
};
let chunks_ih = w_ih.chunk(3, 1)?;
let chunks_hh = w_hh.chunk(3, 1)?;
let r_gate = crate::ops::sigmoid(&(&chunks_ih[0] + &chunks_hh[0])?)?;
let z_gate = crate::ops::sigmoid(&(&chunks_ih[1] + &chunks_hh[1])?)?;
let n_gate = (&chunks_ih[2] + (r_gate * &chunks_hh[2])?)?.tanh();
let next_h = ((&z_gate * &in_state.h)? - ((&z_gate - 1.)? * n_gate)?)?;
Ok(GRUState { h: next_h })
}
/// The input should have dimensions [batch_size, seq_len, features].
fn seq_init(&self, input: &Tensor, in_state: &Self::State) -> Result<(Tensor, Self::State)> {
let (_b_size, seq_len, _features) = input.dims3()?;
let mut state = in_state.clone();
let mut output: Vec<Tensor> = Vec::with_capacity(seq_len);
for seq_index in 0..seq_len {
let input = input.i((.., seq_index, ..))?;
state = self.step(&input, &state)?;
output.push(state.h.clone());
}
let output = Tensor::cat(&output, 1)?;
Ok((output, state))
}
}